初始化spark,你只需传递两个参数:
val conf = new SparkConf().setMaster("local").setAppName("My App")
val sc = new SparkContext(conf)
-
集群 URL:告诉 Spark 如何连接到集群上。在这几个例子中我们使用的是 local,这个
特殊值可以让 Spark 运行在单机单线程上而无需连接到集群。
-
应用名:在例子中我们使用的是 My App。当连接到一个集群时,这个值可以帮助你在集群管理器的用户界面中找到你的应用。
package cn.itcast.spark.sql
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.SQLContext
object InferringSchema {
def main(args: Array[String]) {
//创建SparkConf()并设置App名称
val conf = new SparkConf().setAppName("SQL-1")
//SQLContext要依赖SparkContext
val sc = new SparkContext(conf)
//创建SQLContext
val sqlContext = new SQLContext(sc)
//从指定的地址创建RDD
val lineRDD = sc.textFile(args(0)).map(_.split(" "))
//创建case class
//将RDD和case class关联
val personRDD = lineRDD.map(x => Person(x(0).toInt, x(1), x(2).toInt))
//导入隐式转换,如果不到人无法将RDD转换成DataFrame
//将RDD转换成DataFrame
import sqlContext.implicits._
val personDF = personRDD.toDF
//注册表
personDF.registerTempTable("t_person")
//传入SQL
val df = sqlContext.sql("select * from t_person order by age desc limit 2")
//将结果以JSON的方式存储到指定位置
df.write.json(args(1))
//停止Spark Context
sc.stop()
}
}
//case class一定要放到外面
case class Person(id: Int, name: String, age: Int)
数据源:
1.从mysql中加载数据
val jdbcDF = sqlContext.read.format("jdbc").options(Map("url" -> "jdbc:mysql://192.168.10.1:3306/bigdata", "driver" -> "com.mysql.jdbc.Driver", "dbtable" -> "person", "user" -> "root", "password" -> "123456")).load()
2. 执行查询
jdbcDF.show()
将数据写入mysql数据库:
package cn.itcast.spark.sql
import java.util.Properties
import org.apache.spark.sql.{SQLContext, Row}
import org.apache.spark.sql.types.{StringType, IntegerType, StructField, StructType}
import org.apache.spark.{SparkConf, SparkContext}
object JdbcRDD {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("MySQL-Demo")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
//通过并行化创建RDD
val personRDD = sc.parallelize(Array("1 tom 5", "2 jerry 3", "3 kitty 6")).map(_.split(" "))
//通过StructType直接指定每个字段的schema
val schema = StructType(
List(
StructField("id", IntegerType, true),
StructField("name", StringType, true),
StructField("age", IntegerType, true)
)
)
//将RDD映射到rowRDD
val rowRDD = personRDD.map(p => Row(p(0).toInt, p(1).trim, p(2).toInt))
//将schema信息应用到rowRDD上
val personDataFrame = sqlContext.createDataFrame(rowRDD, schema)
//创建Properties存储数据库相关属性
val prop = new Properties()
prop.put("user", "root")
prop.put("password", "123456")
//将数据追加到数据库
personDataFrame.write.mode("append").jdbc("jdbc:mysql://192.168.10.1:3306/bigdata", "bigdata.person", prop)
//停止SparkContext
sc.stop()
}
}