高等数学一:函数与极限二:收敛数列的有界性的证明

证明收敛数列的有界性,只需要证明该数列的任何一项都落在一个固定的范围。

数列X1,X2,X3一直到Xn都落在一个固定的范围。

可以用数学语言表示为

|Xn|<M

已经知道该数列收敛,

则有|Xn-a|<ε,

则有-ε<Xn-a<ε,

则有-ε+a<Xn<ε+a,

又有若数列有界的数学语言为

|Xn|<M

则有-M<Xn<M,

则该范围存在,

为{-ε+a,ε+a}。

 

同时需要注意,数列有界,和数列收敛,发散之间的关系。

数列如果无界,则数列一定发散。

数列如果发散,数列不一定无界。比如(-1)^(n+1)。

数列如果有界,数列不一定收敛。比如(-1)^(n+1)。

数列如果收敛,则数列一定有界,上面就是证明。

数列无界,则数列不可能无限接近一个数值。则不可能收敛,则一定发散。因为当数列无限接近一个数值的时候,就存在了极限。同时这个极限周围,存在一个固定的范围,让数列项落在此处,落在该极限值的周围,无限的靠近。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值