题目:大礼包(深度优先搜索)

leetcode原版解析

题目:

 在商店中, 有许多在售的物品。
 然而,也有一些大礼包,每个大礼包以优惠的价格捆绑销售一组物品。
 现给定每个物品的价格,每个大礼包包含物品的清单,以及待购物品清单。请输出确切完成待购清单的最低花费。
 每个大礼包的由一个数组中的一组数据描述,最后一个数字代表大礼包的价格,其他数字分别表示内含的其他种类物品的数量。
 任意大礼包可无限次购买。
 示例 1:
 输入: [2,5],      [3,2],     [[3,0,5],[1,2,10]]
 输出: 14
 解释: 
 有A和B两种物品,价格分别为¥2和¥5。
 你需要购买3个A和2个B。
 大礼包1,你可以以¥5的价格购买3A和0B。
 大礼包2, 你可以以¥10的价格购买1A和2B。
 所以你付了¥10购买了1A和2B(大礼包2),以及¥4购买2A。
 示例 2:
 输入: [2,3,4],      [1,2,1],      [[1,1,0,4],[2,2,1,9]]
 输出: 11
 解释: 
 A,B,C的价格分别为¥2,¥3,¥4.
 你需要买1A,2B和1C
 你可以用¥4购买1A和1B,也可以用¥9购买2A,2B和1C。
 所以你付了¥4买了1A和1B(大礼包1),以及¥3购买1B, ¥4购买1C。
 你不可以购买超出待购清单的物品,尽管购买大礼包2更加便宜。

解析1:

用价格和需求的点积作为结果的初始值,因为最坏情况,一个offer 不用也就这样了。在此基础上尝试使用每个offer,一旦发现有合法的offer尝试使
用,然后看看是不是总价格更低了,是的话就采用。因为不同的offer有好有坏,所有用完当前offer还要撤销一下,即回溯一下,这样才能继续尝试其
他offer,本质上还是枚举了所有的可能性。取一个最小值。判断是否合法offer 的逻辑也很简单。必须每个物品的量都不能超过needs的量。因为不能
多买。
class Solution1 {
public:
    int shoppingOffers(vector<int>& price, vector<vector<int>>& special, vector<int>& needs) {
        int N = price.size();
        int res = inner_product(price.begin(), price.end(), needs.begin(), 0);

        for (const auto& offer : special) {
            bool isValid = true;
            for (int j = 0; j < N; j++) {
                if (needs[j] < offer[j]) {
                    isValid = false;
                }
            }

            if (isValid) {
                // Make choice
                for (int j = 0; j < N; j++) {
                    needs[j] -= offer[j];
                }
                res = min(res, offer.back() + shoppingOffers(price, special, needs));
                // Undo choice
                for (int j = 0; j < N; j++) {
                    needs[j] += offer[j];
                }
            }
        }

        return res;
    }
};

解析2:

DFS:使用一个helper 函数减少重复计算,不用做选择再撤销选择。因为needs在循环中一致保持不变。
class Solution2 {
public:
    int shoppingOffers(vector<int>& price, vector<vector<int>>& special, vector<int>& needs) {
        int N = price.size();
        int res = inner_product(price.begin(), price.end(), needs.begin(), 0);

        for (const auto& offer : special) {
            auto rem = helper(offer, needs);
            if (rem.empty()) {
                continue;
            }
            res = min(res, offer.back() + shoppingOffers(price, special, rem));
        }

        return res;
    }

    vector<int> helper(const vector<int>& offer, const vector<int>& needs) {
        vector<int> remainder(needs.size(), 0);
        for (int i = 0; i < needs.size(); i++) {
            if (offer[i] > needs[i]) {
                return {};
            }
            remainder[i] = needs[i] - offer[i];
        }

        return remainder;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值