【极易入门】基于面部特征提取的实时人脸身份识别与非授权入侵检测系统(含完整代码)


笔者为某不知名985非计算机专业学生,假期闲来对CV有点感兴趣,遂做一点小项目,属于自娱自乐,若能帮助到您则感到百般荣幸,若技术上有需要改进的点或者不妥之处,还望各位积极留言!

后续我也会不定期在CSDN上分享我学习CV以及机器学习、深度学习的相关博客,偏实际应用,欢迎大家积极关注!!!感谢!

一、环境准备

为了运行基于面部特征提取的实时人脸身份识别与非授权入侵检测系统,需要准备以下环境:

1.1 系统要求

  • 操作系统:Windows、macOS 或 Linux
  • Python版本:3.6及以上

1.2 安装依赖库

请确保安装以下Python库:

  1. OpenCV:用于计算机视觉和人脸检测。
pip install deepface
  1. DeepFace:用于面部特征提取和人脸识别。
pip install opencv-python-headless
  1. 其他依赖库
  • NumPy:用于数值计算。
  • Tkinter:用于创建警告窗口和用户交互。

二、项目概述

本项目的核心功能是开发一个基于面部特征提取的实时人脸身份识别与非授权入侵检测系统
该系统旨在通过摄像头实时捕捉并识别用户的面部特征,识别过程中利用DeepFace库进行面部特征提取和比对,从而确保识别的准确性。

2.1 主要用途

  1. 身份验证:该系统可以用于个人计算机或其他设备的身份验证,确保只有经过授权的用户(如Richard)才能访问设备。
  2. 安全监控:系统实时监控周围环境,如检测到非授权用户的面部,系统将立即发出警报,从而防止潜在的安全威胁。
  3. 隐私保护:通过有效的身份识别和入侵检测,该系统可以防止未经授权的人员访问私人信息或设备,提供隐私保护。

2.2 目标

  • 高准确度:通过多次采集面部特征并取平均值,提高识别的准确性,避免误识别或漏识别的情况发生。
  • 实时处理:系统能够实时处理摄像头捕捉到的画面,迅速做出判断并执行相应的动作,如发出警报或记录检测到的非授权用户面部。
  • 用户友好:操作简单,用户只需正对摄像头,系统即可自动完成身份验证和入侵检测过程。
  • 扩展性:系统具备良好的扩展性,未来可以结合更多功能模块,如多用户识别、面部表情分析等,以满足更广泛的应用需求。

三、程序设计与实现

在本节中,我们将详细介绍该系统的设计与实现。主要包括人脸检测模块、人脸识别模块以及入侵检测与报警模块。每个模块都会提供相应的代码及其解释,以帮助理解程序的工作原理。

3.1 主要功能概述

本系统由三个主要功能模块组成:

  1. 人脸检测模块:利用OpenCV进行人脸检测,识别出摄像头画面中的人脸区域。
  2. 人脸识别模块:使用DeepFace库提取面部特征,并与已注册的用户(如Richard)的特征进行比对,判断是否为授权用户。
  3. 入侵检测与报警模块:如果检测到非授权用户的面部特征,系统将触发报警并保存相关图像。

3.2 人脸检测模块

在该模块中,我们使用OpenCV的Haar级联分类器来检测摄像头画面中的人脸。以下是代码实现及其解释:

import cv2

# 加载OpenCV的Haar级联人脸检测器
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')

# 初始化摄像头
cap = cv2.VideoCapture(0)

# 从摄像头捕获帧并进行人脸检测
ret, frame = cap.read()
faces = face_cascade.detectMultiScale(frame, scaleFactor=1.3, minNeighbors=5, minSize=(30, 30))

# 标识检测到的人脸
for (x, y, w, h) in faces:
    cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 0, 0), 2)

# 显示结果
cv2.imshow('Face Detection', frame)
cv2.waitKey(0)
cv2.destroyAllWindows()
  • CascadeClassifier:加载预训练的Haar级联分类器,用于人脸检测。
  • detectMultiScale:检测输入帧中的人脸,scaleFactor调整图像大小,minNeighbors决定每个候选矩形应保留多少个邻近矩形。
  • rectangle:在检测到的人脸区域绘制矩形框。

3.3 人脸识别模块

在人脸检测到之后,接下来是提取面部特征并进行比对。本模块使用DeepFace库来实现面部特征的提取和比对。以下是代码实现及其解释:

from deepface import DeepFace
import numpy as np

# 读取并存储Richard的脸部图像
richard_face = frame[y:y + h, x:x + w]

# 使用DeepFace库提取面部特征
richard_embedding = DeepFace.represent(img_path=None, img=richard_face, model_name='VGG-Face', enforce_detection=False)[0]['embedding']

# 多次采集样本进行平均特征值计算(假设已经进行了多次采集)
richard_embeddings = [richard_embedding1, richard_embedding2, richard_embedding3]  # 示例
avg_richard_embedding &
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值