自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(36)
  • 资源 (1)
  • 收藏
  • 关注

原创 行人重识别工作汇总

这里写自定义目录标题欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入欢迎使用Ma...

2019-03-13 15:05:29 2180

原创 设计模式及例子讲解(todo)

学习设计模式中一些简单的笔记为什么要学习设计模式:我们学设计模式,是为了学习如何合理的组织我们的代码,如何解耦,如何真正的达到对修改封闭对扩展开放的效果,而不是去背诵那些类的继承模式,然后自己记不住,回过头来就骂设计模式把你的代码搞复杂了,要反设计模式。设计模式的目的只有一个:降低对象之间的耦合,增加程序的可复用性、可扩展性、可维护性。为了合理的利用设计模式,我们应该明白一个概念...

2020-02-13 15:28:55 303

原创 【person search】Re-ID Driven Localization Refinement for Person Search

Paper:Re-ID Driven Localization Refinement for Person SearchMotivation:由于检测任务注重人的共同性,而重新识别任务则关注人与人之间的差异。更准的框可以排除掉背景非目标人的干扰和,把目标人的丢失的属性信息找回来(比如背包)。Contribution:1,在re-ID损失的监督下优化探测器,以生产出可靠的...

2019-10-06 10:46:59 1194

原创 【KD】、【reid】Distilled Person Re-identification: Towards a More Scalable System

评论:log distance对我们有参考意义,多teacher其他的研究是面向无监督学习的。Motivation: 面向应用,论文从以下几点出发:要有低的标注成本。A scalable Re-ID system可以从无标签数据和半标注数据中学习。 要有低的场景扩展成本。当扩展新的场景时,低成本的解决cross domin的问题。 要有低的testing computatio...

2019-10-06 10:42:50 1009

原创 【KD】Correlation Congruence for Knowledge Distillation

Paper: Correlation Congruence for Knowledge Distillation1, Motivation:通常情况下KD的teacher模型的特征空间没考虑类内类间的分布,student模型也将缺少我们期望的类内类间的分布特性。Usually, the embedding space of teacher possesses the charac...

2019-09-30 18:11:58 1740

原创 【KD】基础知识

1,让student minic teacher feature的方式(LOSS):(1)KL散度(2)欧式距离(3)L2mimic loss (face)Q. Li, S. Jin, and J. Yan. Mimicking very efficient network for object detection. In 2017 IEEE Conference on C...

2019-09-30 18:11:33 631

原创 Knowledge Distillation总目录

论文 简介 链接

2019-09-29 16:33:48 208

原创 A Pose-Sensitive Embedding for Person Re-Identification with Expanded Cross Neighborhood Re-Ranking

A Pose-Sensitive Embedding for Person Re-Identification with Expanded Cross Neighborhood Re-Ranking(re-ranking 方法)github: https://github.com/pse-ecn/expanded-cross-neighborhood本文提出的方法结合了人的精细和粗略姿态信...

2019-03-14 10:24:16 1877 1

原创 Human Semantic Parsing for Person Re-identification(Parsing 方法)

4.Human Semantic Parsing for Person Re-identification(Parsing 方法)语义解析用于重识别论文的细节和技巧:框架:2048global + 2048前景 +加其他4个parsing的max pooling后的2048+l2 normalization作为特征,效果最好。训练:第一阶段:先在111000 im...

2019-03-13 20:57:56 1236 2

原创 Pose-Normalized Image Generation for Person Re-identification (note)

Pose-Normalized Image Generation for Person Re-identificationgithub:https://github.com/naiq/PN_GAN在这项工作中,我们通过提出一种新的深度人物图像生成模型来处理缺少交叉视角配对训练数据,以及剧烈姿势变化难的这两个问题,以合成以姿势为条件的真实人物图像。该模型基于专门针对re-id中的姿态归一化而...

2019-03-13 20:54:18 2339 1

原创 Deep Spatial Feature Reconstruction for Partial Person Re-identification Alignment-Free Approach(nt)

Deep Spatial Feature Reconstruction for Partial Person Re-identification Alignment-Free Approach部分人重新识别(re-id)解决遮挡情况下的匹配提出的方法利用完全卷积网络(FCN)来生成特定尺寸的空间特征图,使得像素级特征是一致的。为了匹配一对不同尺寸的人物图像,因此进一步开发了称为深空间特...

2019-03-13 20:37:07 1010

原创 2018-CVPR-sensetime-Paper

目录(1)Group consistent similarity learning via deep CRFs for person re-identification (oral)(2)Eliminating Background-bias for Robust Person Re-identification (parsing 方法的一篇)(3)High performance v...

2019-03-13 20:24:40 423

原创 Multi-shot Pedestrian Re-identification via Sequential Decision Making (note)

Multi-shot Pedestrian Re-identification via Sequential Decision Making因为视频连续帧有很多冗余,解决方法:一个流学习rgb表面特征,一个流学习运动信息他们的方法:出发点:效果好的时候,看一张图片就好了,出现模糊和遮挡的现象时,需要动态的调节看多少图像。使用增强学习框架Then, the a...

2019-03-13 19:50:16 576

原创 2018-CVPR-自动化所-Paper

目录论文 1 Dynamic Feature Learning for Partial Face Recognition(提出滑动损失)论文 2 Deep Spatial Feature Reconstruction for Partial Person Re-identification: Freestyle Approach论文 3 Adversarially Occluded...

2019-03-13 19:33:02 1703

原创 SphereReID: Deep Hypersphere Manifold Embedding for Person Re-Identification (note)

SphereReID: 亮点基于face思想在softmax上改loss 训练技巧:成批提取图片Backbone: a global average pooling (GAP), batch normalization (BN), dropout (DP), fully connected layer (FC), batch normalization (BN), L2 normali...

2019-03-13 19:10:44 713

原创 One-Shot Video-Based Person Re-Identification by Stepwise Learning (comment)

Exploit the Unknown Gradually: One-Shot Video-Based Person Re-Identification by Stepwise Learning (Sydney大学)用未标注样本解决单标注样本下的视频行人重识别问题逐渐利用未标注样本,来解决单标注样本(one-shot)情况下的视频行人重识别问题(video-based person re-...

2019-03-13 16:41:44 548

原创 Person search: Joint Detection and Identification Feature Learning for Person Search笔记

Person search: Joint Detection and Identification Feature Learning for Person Search(结合了detection 和 re-id问题)OIM提出的背景:1/(triplet loss) not efficient as only several data samples are compared at each...

2019-03-13 15:45:57 449

原创 常用指令

移动:mv 原文件地址/文件地址 目标文件地址改名:mv 原文件名 新文件名新建文件夹:mkdirrmdir 删除空 文件夹rm -rf 删除非空的 vim常用命令是ESC,然后:wq(保存并退出),:q!(不保存并强制退出),i进入vim模式。 bash 打开sh文件...

2019-02-20 13:43:58 154

原创 目标检测:SSD

要点:1. SSD的核心是使用应用于feature map的小卷积滤波器来预测固定的一组默认边界框的类别和框偏移。 将边界框的输出空间离散化为不同宽高比和每个要素图位置的一组默认框。生成固定大小的边界框集合以及在这些框中存在对象类实例的分数,随后是非最大抑制步骤以产生最终检测 (超过阈值即检测出:允许网络预测多个重叠默认框的高分,而不是要求它只选择具有最大重叠的一个)。 2...

2018-08-17 22:14:42 4029

原创 python import引入不同路径下的模块

python 包含子目录中的模块方法比较简单,关键是能够在sys.path里面找到通向模块文件的路径。 下面将具体介绍几种常用情况: (1)主程序与模块程序在同一目录下: 如下面程序结构: `-- src     |-- mod1.py     `-- test1.py     若在程序test1.py中导入模块mod1, 则直接使用 import  mod1或from mod1 import *...

2018-06-04 09:22:52 4315

原创 pytorch install安装

在http://pytorch.org/中点击对应的系统版本,即可以在网页上的run this command找到对应的命令行安装代码.sudo pip install torch torchvisionpip install torch torchvisionpip install --user torch torchvision...

2018-06-01 12:12:47 1766

原创 Multi-pseudo Regularized Label for Generated Samples in Person Re-Identification(多伪正则化标签(MpRL)、GAN)

类别(Reid、GAN、semi-supervised )主要思想:由vanilla GAN生成的样品通常没有标签。因此,本文提出了一个称为多伪正则化标签(MpRL)的虚拟标签,并将其分配给生成的图像。考虑到生成样本和原始样本的区别,MpRL使用了不同的预定义训练类(trainning class)的贡献。基于贡献的虚拟标签被自动分配到生成的样本中,以减少训练中的模糊预测。与此同时,MpRL只依赖...

2018-05-31 13:53:14 1529 1

原创 配置opencv3.1+caffe

caffe reid https://github.com/zlmzju/caffe/tree/reidcaffe install http://caffe.berkeleyvision.org/install_apt.htmlUbuntu16.04 14.04安装配置Caffe(GPU版):https://www.cnblogs.com/go-better/p/7161006.htmlUbunt...

2018-05-30 13:39:47 2867

原创 Camera Style Adaptation for Person Re-identification(镜头间的风格转换re-id)

论文核心:1.motivation: 如果可以在训练集中增加更多样本来了解摄像机之间的风格差异,就能够解决个人身份识别中的数据稀缺问题,并学习不同摄像机之间的不变特征。解决:使用cycleGAN完成镜头间图片转换,损失函数使用cycleGAN loss 和 identify mapping loss。2.motivation:增加数据多样性以防止过度拟合,但是也会产生相当程度的噪音。 解决:为了缓...

2018-05-29 16:00:37 4385

原创 最近在看的blog

博主:AI之路NIPS综述:http://www.deepscholar.com/2018/11/28/nips-2018/FPN:https://blog.csdn.net/u014380165/article/details/72890275SSD: https://blog.csdn.net/u014380165/article/details/72824889denseN...

2018-05-29 14:40:49 173

原创 Person Transfer GAN to Bridge Domain Gap for Person Re-Identification(PTGAN+MSMT17)

论文分为数据集和图像风格迁移算法(两个数据集之间)两部分:这是属于无监督的迁移,GANMotivation:1.数据集和现实的区别:1.规模小2.场景单一 3.光照单一解决:因此提出了更为复杂的数据集MSMT17。2.想解决训练集测试集不均衡的问题:(目前训练测试集基本上时1:1的比例)方法:重用之前的别的数据集训练。但是数据集之前的gap导致识别率低。...

2018-05-29 14:38:42 3179

原创 ubuntu下运行python提示: no module named pip

我之前装了pip啊。后来又装了几遍网上各种方法都不行。我按知乎的说法检查 cd /usr/local/lib/python3.5/dist-packages/ 文件夹下发现没有pip文件夹也就是没装python3.5的pip??所以运行apt-get install python3-pip(try)(其他的一些配置)pip3 install numpypip3 install scipypip3 ...

2018-05-25 13:27:34 47920 11

原创 将github项目clone到本地

在终端输入git clone --recursive (在github复制的网址即可)有时候下载不全的- - gitlab使用:https://www.jianshu.com/p/038ccb3518f2 为github帐号添加SSH keys:https://blog.csdn.net/keyboardOTA/article/details/7603630 ...

2018-05-25 11:33:02 1197

原创 配置keras

首先可以参考这个网址操作:http://keras-cn.readthedocs.io/en/latest/for_beginners/keras_linux/因为我之前已经配完到tensorflow了。直接输入:就可以安装conda install -c anaconda keras-gpu # for gpu version我觉的都用conda 比pip好一点。pip下载完我系统有时候找不到。...

2018-05-25 11:09:05 790 1

原创 Mask RCNN学习笔记

之前写了一堆Faster R-CNN,RPN,FCN都是为了铺垫这个的。- -。我的原论文上的笔记(PDF):https://pan.baidu.com/s/1ow34QjcLQRXI-RWnQOQcngTensflow平台的: https://github.com/CharlesShang/FastMaskRCNN计算图片均值的工具:http://www.cnblogs.com/denny402...

2018-05-23 18:32:26 3116

转载 Faster R-CNN学习笔记

论文大部分转载自:https://blog.csdn.net/WZZ18191171661/article/details/79439212论文题目:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 论文链接:论文链接论文代码:Matlab版本点击此处,Python版本点击此处作为一个目标检...

2018-05-23 18:14:00 15953 6

原创 (RegionProposal Network)RPN网络结构及详解

RPN(RegionProposal Network)区域生成网络Faster-RCNN的核心。在这里整理。1.anchors。特征可以看做一个尺度51*39的256通道图像,对于该图像的每一个位置,考虑9个可能的候选窗口:三种面积{128,256,512}×{128,256,512}×三种比例{1:1,1:2,2:1}{1:1,1:2,2:1}。这些候选窗口称为anchors...

2018-05-23 17:40:38 195404 52

原创 FCN的学习及理解(Fully Convolutional Networks for Semantic Segmentation)

论文Fully Convolutional Networks for Semantic Segmentation 是图像分割的milestone论文。理清一下我学习过程中关注的重点。fcn开源代码github下载地址https://github.com/shelhamer/fcn.berkeleyvision.org核心思想该论文包含了当下CNN的三个思潮- 不含全连接层(fc)的全卷积(fu...

2018-05-23 15:55:25 295056 54

原创 ubuntu16.04新机状态配置tensflow记录(ubuntu16.04安装GPU驱动、CUDA8.0、cudnn6、tensorflow1.3)

主要参考的教程:https://blog.csdn.net/u010279699/article/details/72869200-系统:ubuntu16.04 -显卡:集显+独显(GTX1080) -位数:64位但是还是有问题,所以记录一下我的过程。一些操作指令:打开文件夹 cd /home/然后打开子文件夹(比如我的子文件名字是moonuke) cd moonuke/列出文件夹内容 ls获得最...

2018-05-23 14:53:23 553

转载 全连接层的作用

全连接层到底什么用?从别的地方总结学习了一下。全连接层(fully connected layers,FC)在整个卷积神经网络中起到“分类器”的作用。如果说卷积层、池化层和激活函数层等操作是将原始数据映射到隐层特征空间的话,全连接层则起到将学到的“分布式特征表示”映射到样本标记空间的作用。在实际使用中,全连接层可由卷积操作实现:对前层是全连接的全连接层可以转化为卷积核为1x1的卷积;而

2017-08-16 10:07:18 8176

翻译 GMS快速高鲁棒性特征学习

优点:加入平滑约束项的特征匹配具有高鲁棒性匹配效果。该文章提出GMS:一种简单方法封装运动平滑来作为数据估计区域中一个确定数量的匹配。GMS可以将高数量匹配转换成高质量匹配。这实现了一种实时,高鲁棒性的系统。对于计算的视频,要求具有低纹理,低模糊。本文观念:特征数也影响质量。找更多的特征比找新的描述子要简单。

2017-07-07 17:16:06 6091 4

Mask R-CNN

Mask R-CNN

2018-05-23

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除