# qq = input('输入qq号码:')
# if len(qq) >= 5 and qq[0] !=0:
# print('合法')
# else:
# print('不合法')
# '''
# 元字符
# 描述
# \
# 将下一个字符标记符、或一个向后引用、或一个八进制转义符。例如,“\\n”匹配\n。“\n”匹配换行符。序列“\\”匹配“\”而“\(”则匹配“(”。即相当于多种编程语言中都有的“转义字符”的概念。
# ^
# 匹配输入字行首。如果设置了RegExp对象的Multiline属性,^也匹配“\n”或“\r”之后的位置。
# $
# 匹配输入行尾。如果设置了RegExp对象的Multiline属性,$也匹配“\n”或“\r”之前的位置。
# *
# 匹配前面的子表达式任意次。例如,zo*能匹配“z”,也能匹配“zo”以及“zoo”。*等价于{0,}。
# +
# 匹配前面的子表达式一次或多次(大于等于1次)。例如,“zo+”能匹配“zo”以及“zoo”,但不能匹配“z”。+等价于{1,}。
# ?
# 匹配前面的子表达式零次或一次。例如,“do(es)?”可以匹配“do”或“does”。?等价于{0,1}。
# {n}
# n是一个非负整数。匹配确定的n次。例如,“o{2}”不能匹配“Bob”中的“o”,但是能匹配“food”中的两个o。
# {n,}
# n是一个非负整数。至少匹配n次。例如,“o{2,}”不能匹配“Bob”中的“o”,但能匹配“foooood”中的所有o。“o{1,}”等价于“o+”。“o{0,}”则等价于“o*”。
# {n,m}
# m和n均为非负整数,其中n<=m。最少匹配n次且最多匹配m次。例如,“o{1,3}”将匹配“fooooood”中的前三个o为一组,后三个o为一组。“o{0,1}”等价于“o?”。请注意在逗号和两个数之间不能有空格。
# ?
# 当该字符紧跟在任何一个其他限制符(*,+,?,{n},{n,},{n,m})后面时,匹配模式是非贪婪的。非贪婪模式尽可能少地匹配所搜索的字符串,而默认的贪婪模式则尽可能多地匹配所搜索的字符串。例如,对于字符串“oooo”,“o+”将尽可能多地匹配“o”,得到结果[“oooo”],而“o+?”将尽可能少地匹配“o”,得到结果 ['o', 'o', 'o', 'o']
# .点
# 匹配除“\n”和"\r"之外的任何单个字符。要匹配包括“\n”和"\r"在内的任何字符,请使用像“[\s\S]”的模式。
# (pattern)
# 匹配pattern并获取这一匹配。所获取的匹配可以从产生的Matches集合得到,在VBScript中使用SubMatches集合,在JScript中则使用$0…$9属性。要匹配圆括号字符,请使用“\(”或“\)”。
# (?:pattern)
# 非获取匹配,匹配pattern但不获取匹配结果,不进行存储供以后使用。这在使用或字符“(|)”来组合一个模式的各个部分时很有用。例如“industr(?:y|ies)”就是一个比“industry|industries”更简略的表达式。
# (?=pattern)
# 非获取匹配,正向肯定预查,在任何匹配pattern的字符串开始处匹配查找字符串,该匹配不需要获取供以后使用。例如,“Windows(?=95|98|NT|2000)”能匹配“Windows2000”中的“Windows”,但不能匹配“Windows3.1”中的“Windows”。预查不消耗字符,也就是说,在一个匹配发生后,在最后一次匹配之后立即开始下一次匹配的搜索,而不是从包含预查的字符之后开始。
# (?!pattern)
# 非获取匹配,正向否定预查,在任何不匹配pattern的字符串开始处匹配查找字符串,该匹配不需要获取供以后使用。例如“Windows(?!95|98|NT|2000)”能匹配“Windows3.1”中的“Windows”,但不能匹配“Windows2000”中的“Windows”。
# (?<=pattern)
# 非获取匹配,反向肯定预查,与正向肯定预查类似,只是方向相反。例如,“(?<=95|98|NT|2000)Windows”能匹配“2000Windows”中的“Windows”,但不能匹配“3.1Windows”中的“Windows”。
# *python的正则表达式没有完全按照正则表达式规范实现,所以一些高级特性建议使用其他语言如java、scala等
# (?<!patte_n)
# 非获取匹配,反向否定预查,与正向否定预查类似,只是方向相反。例如“(?<!95|98|NT|2000)Windows”能匹配“3.1Windows”中的“Windows”,但不能匹配“2000Windows”中的“Windows”。
# *python的正则表达式没有完全按照正则表达式规范实现,所以一些高级特性建议使用其他语言如java、scala等
# x|y
# 匹配x或y。例如,“z|food”能匹配“z”或“food”(此处请谨慎)。“[zf]ood”则匹配“zood”或“food”。
# [xyz]
# 字符集合。匹配所包含的任意一个字符。例如,“[abc]”可以匹配“plain”中的“a”。
# [^xyz]
# 负值字符集合。匹配未包含的任意字符。例如,“[^abc]”可以匹配“plain”中的“plin”任一字符。
# [a-z]
# 字符范围。匹配指定范围内的任意字符。例如,“[a-z]”可以匹配“a”到“z”范围内的任意小写字母字符。
# 注意:只有连字符在字符组内部时,并且出现在两个字符之间时,才能表示字符的范围; 如果出字符组的开头,则只能表示连字符本身.
# [^a-z]
# 负值字符范围。匹配任何不在指定范围内的任意字符。例如,“[^a-z]”可以匹配任何不在“a”到“z”范围内的任意字符。
# \b
# 匹配一个单词的边界,也就是指单词和空格间的位置(即正则表达式的“匹配”有两种概念,一种是匹配字符,一种是匹配位置,这里的\b就是匹配位置的)。例如,“er\b”可以匹配“never”中的“er”,但不能匹配“verb”中的“er”;“\b1_”可以匹配“1_23”中的“1_”,但不能匹配“21_3”中的“1_”。
# \B
# 匹配非单词边界。“er\B”能匹配“verb”中的“er”,但不能匹配“never”中的“er”。
# \cx
# 匹配由x指明的控制字符。例如,\cM匹配一个Control-M或回车符。x的值必须为A-Z或a-z之一。否则,将c视为一个原义的“c”字符。
# \d
# 匹配一个数字字符。等价于[0-9]。grep 要加上-P,perl正则支持
# \D
# 匹配一个非数字字符。等价于[^0-9]。grep要加上-P,perl正则支持
# \f
# 匹配一个换页符。等价于\x0c和\cL。
# \n
# 匹配一个换行符。等价于\x0a和\cJ。
# \r
# 匹配一个回车符。等价于\x0d和\cM。
# \s
# 匹配任何不可见字符,包括空格、制表符、换页符等等。等价于[ \f\n\r\t\v]。
# \S
# 匹配任何可见字符。等价于[^ \f\n\r\t\v]。
# \t
# 匹配一个制表符。等价于\x09和\cI。
# \v
# 匹配一个垂直制表符。等价于\x0b和\cK。
# \w
# 匹配包括下划线的任何单词字符。类似但不等价于“[A-Za-z0-9_]”,这里的"单词"字符使用Unicode字符集。
# \W
# 匹配任何非单词字符。等价于“[^A-Za-z0-9_]”。
# \xn
# 匹配n,其中n为十六进制转义值。十六进制转义值必须为确定的两个数字长。例如,“\x41”匹配“A”。“\x041”则等价于“\x04&1”。正则表达式中可以使用ASCII编码。
# \num
# 匹配num,其中num是一个正整数。对所获取的匹配的引用。例如,“(.)\1”匹配两个连续的相同字符。
# \n
# 标识一个八进制转义值或一个向后引用。如果\n之前至少n个获取的子表达式,则n为向后引用。否则,如果n为八进制数字(0-7),则n为一个八进制转义值。
# \nm
# 标识一个八进制转义值或一个向后引用。如果\nm之前至少有nm个获得子表达式,则nm为向后引用。如果\nm之前至少有n个获取,则n为一个后跟文字m的向后引用。如果前面的条件都不满足,若n和m均为八进制数字(0-7),则\nm将匹配八进制转义值nm。
# \nml
# 如果n为八进制数字(0-7),且m和l均为八进制数字(0-7),则匹配八进制转义值nml。
# \un
# 匹配n,其中n是一个用四个十六进制数字表示的Unicode字符。例如,\u00A9匹配版权符号(©)。
# \p{P}
# 小写 p 是 property 的意思,表示 Unicode 属性,用于 Unicode 正表达式的前缀。中括号内的“P”表示Unicode 字符集七个字符属性之一:标点字符。其他六个属性:L:字母;M:标记符号(一般不会单独出现);Z:分隔符(比如空格、换行等);S:符号(比如数学符号、货币符号等);N:数字(比如阿拉伯数字、罗马数字等);C:其他字符。*注:此语法部分语言不支持,例:javascript。
# \<
# \>
# 匹配词(word)的开始(\<)和结束(\>)。例如正则表达式\<the\>能够匹配字符串"for the wise"中的"the",但是不能匹配字符串"otherwise"中的"the"。注意:这个元字符不是所有的软件都支持的。
# ( )
# 将( 和 ) 之间的表达式定义为“组”(group),并且将匹配这个表达式的字符保存到一个临时区域(一个正则表达式中最多可以保存9个),它们可以用 \1 到\9 的符号来引用。
# |
# 将两个匹配条件进行逻辑“或”(Or)运算。例如正则表达式(him|her) 匹配"it belongs to him"和"it belongs to her",但是不能匹配"it belongs to them."。注意:这个元字符不是所有的软件都支持的。
# '''
import re
curl1 = '<script charset="utf-8" src="https://s1.hdslb.com/bfs/static/player/main/widgets/jsc-vendors~auxiliary~player.f51728b0.js"></script>'
pattern = re.compile('<scr')
#match 从头开始匹配
result = pattern.match(curl1) #没有匹配,返回None
print(result) #<re.Match object; span=(0, 4), match='<scr'>
#使用re 模块 match 从头开始匹配
result = re.match('src',curl1)
print(result)
#全部搜索
result = re.search('src',curl1)
print(result) #<re.Match object; span=(24, 27), match='src'>
#span 返回搜索到的位置
print(result.span()) #(24, 27)
# 使用group 提取到匹配的内容
# print(result.group(''))
# print(result.groups(''))
msg = 'addd8888shdh12dh0asdh1h'
result = re.search('[0-9]',msg)
print(result)
# search 只要匹配到一个就不找后面的了
#前面是字母,中间是数字,后面是字母
result = re.search('[a-z][0-9][a-z]',msg)
print(result)
# findall 匹配这个字符串,找出的是个列表
result = re.findall('[a-z][0-9][a-z]',msg)
print(result) # ['h0a', 'h1h']
# [0-9]+ 表示匹配 N 个数字
result = re.findall('[a-z][0-9]+[a-z]',msg)
print(result) # ['d8888s', 'h12d', 'h0a', 'h1h']
# qq 号码 5-11 位
qq = '582167559111111'
result = re.match('[1-9][0-9]+',qq)
r = result.group()
if 5 <= len(r) <= 11:
print('合格')
else:
print('不合格')
# ^ 以某某开头 $ 以某某结尾
t1 = re.match('^[1-9][0-9]{1,}$',qq)
print(t1)
# {m,n} 大于等于m 小于等于n 次
t1 = re.match('^[1-9][0-9]{5,17}$',qq)
print(t1)
#用户名可以是字母或者数字,不能是数字开头,用户名长度必须6位以上
name = 'xiangzilong123'
# n = re.match('^[a-zA-Z][0-9a-zA-Z]{5,}$',name)
# \w 匹配大小写字母数字下滑线
n= re.match('^[a-zA-Z]\w{5,}$',name)
print(n)
#找出所有的py文件
msg = 'aa.py bb.jpg cc.txt dd.py py.txt'
# t1 = re.findall('\w*\.py\\b',msg)
t1 = re.findall(r'\w*\.py\b',msg)
print(t1)
'''
总结:
. 任意字符除(\n)
^ 开头
$ 结尾
[] 范围 [a-z] [a-z&#] 或者的关系a-z 或者& 或者#
\s 空白(空格)
\b 边界
\d 数字
\w [0-9a-zA-Z]
大写:
\S 非空格
\D 非数字
量词
* >= 0
+ >= 1
? 0到1
'''
#分组
# 匹配0 -100 的数字
n = '100'
result = re.match(r'^[1-9]?\d?$|100$',n)
# result = re.match('^[1-9]\d{1,3}',n)
print(result)
#验证输入邮箱 163 126 qq
#(word| word) word
# [word] w o r d
email = '18802676921@163.com'
result = re.match(r'\w{5,15}@(163|126|qq)\.(com|cn)$',email)
print(email) #18802676921@163.com
print(result) #<re.Match object; span=(0, 19), match='18802676921@163.com'>
#验证手机号不是以4,7 结尾的(11位)
phone = '18802676921'
result = re.match(r'^1[0-9]{9}[1-34-68-9]$',phone)
print(phone)
#分组
phone = '010-123456789'
result1 = re.match(r'(\d{3}|\d{4})-(\d{9}$)',phone)
print(result1)
# 分别提取
print(result1.group()) #010-123456789
print(result1.group(1)) # 010
print(result1.group(2)) #123456789
# 标签提取
msg = '<html><h1>abc<h1></html>'
msg1 = '<h1>hello</h1>'
result2 = re.match(r'<([a-z0-9A-Z]+)>(.+)</[0-9a-zA-Z]+>$',msg)
print(result2.group())
print(result2.group(1))
# number
result = re.match(r'<([a-z0-9A-Z]+)>(.+)</\1>$',msg)
print(msg)
print(result.group(2))
print('####################')
ms = '<html><h1>abc<h1></html>'
result3 = re.match(r'^<([a-z0-9A-Z]+)><([0-9a-zA-Z]+)>(.+)</\2></\1>$',ms)
print(result3)
# print(result3.group(1))
# print(result3.group(2))
# print(result3.group(3))
# 起名方式
msg = '<html><h1>abc<h1></html>'
result = re.match(r'<(?P<name1>\w+)><(?P<name2>\w+)>(.+)</(?P=name2)><(?P=name1)>',msg)
print(result)
# sub 替换
# sub(正则表达式,新内容,string)
# res = re.sub(r'\d+','90','java:200,pathon:1000')
# print(res)
def func(temp):
num = temp.group()
num1 = int(num)+1
return str(num1)
result = re.sub(r'\d+',func,'java:80,python:90')
print(result)
# split 切割
result = re.split(r'[,:]','java:300,python:200')
print(result)
#贪婪改非贪婪(加?)
msg = 'abc123456abc'
result = re.match(r'abc(\d+?)',msg)
print(result)
path = '<img class="main_img img-hover" data-imgurl="https://ss2.bdstatic.com/70cFvnSh_Q1YnxGkpoWK1HF6hhy/it/u=30606
result4 = re.match(r'<img class="main_img img-hover" data-imgurl="(.+?)"',path)
image_path = result4.group(1)
import requests
response = requests.get(image_path)
with open('aa.jpg','wb') as wstream:
wstream.write(response.content)