- 博客(141)
- 收藏
- 关注
原创 mysql数据库 - 统诉
1、DQL语句select字段列表 字段名[AS]别名from表名列表where条件列表【like, between, and, in , and ,or 】group by分组字段列表having分组后条件列表 分组之后过滤order by排序字段列表 升序asc, 降序desclimit分页参数1、用户管理create user ‘用户名’@‘主机名’ IDENTIFIED BY ‘密码’;ALTER user ‘用户名’@‘主机名’
2024-02-25 01:38:15 1043
原创 Jinja 2模板引擎
如何使用Flask渲染摸板在模板中传递一个或多个参数if 语句在摸板中的使用for 语句在模板中的使用Flask 提供了Jiaja 2模板引擎渲染模板,下面逐步介绍其模板渲染机制。templatesindex.htmluser.htmlindex.html<!DOCTYPE html><html lang="en"><head>...
2020-03-07 15:19:28 392
原创 Flask 基础知识1
URLURL (uniform Resource Locator)统一资源定位符号,URL = 传输协议+主机名+端口名+(目录)文件名。传输协议:一般是http:(HyperText Transfer Protocol,超文本传输协议)或https(HyperText Transfer Protocol over Secure Sockett Layer, 安全套接字层超文本传输协议)。...
2020-03-05 20:51:23 295
原创 OpenCV中的图像处理
颜色空间转换1、基本读写操作import cv2import numpy as npimg = cv2.imread('MyPic.png', cv2.IMREAD_GRAYSCALE)print(img.shape)cv2.imwrite('creat_jpg.png', img)显示原始图像为:输出图像结果为:图像与原始字节之间的转换# first we sould ...
2019-12-31 17:27:11 348
原创 Faster-RCNN详解(含代码解析)
前言开始初探RPN网络image input 中anchor如何产生。import numpy as npimport matplotlib.pyplot as pltimport matplotlib.patches as patchesfrom PIL import ImageSample_raw_x = 128 #输入图像的宽度Sample_raw_y = 128 #输入...
2019-11-21 17:19:22 601
原创 基础图像分类(猫狗)
前言考试风波结束,抽时间写个分类。我的理解从文件夹里面读取图像,将是猫的图像标记为0,将是狗的图像标记为1,设置大约4000个训练集合,1000个验证集合。构建网络训练模型下面是我的代码# -*- coding: utf-8 -*-import numpy as npfrom keras import Modelfrom keras.layers import Input...
2019-11-21 17:17:28 1095
原创 nms(Non-MaxSuppression, NMS)非极大值抑制算大
# -*- coding: utf-8 -*-import numpy as npdets = np.array([ [204, 102, 358, 250, 0.5], [257, 118, 380, 250, 0.7], [280, 135, 400, 250, 0.6], ...
2019-11-11 08:18:41 181
原创 图形风格迁移
前言关于深度学习基本原理的文章接近尾声了,最后一个课题是图像风格迁移,关于图像风格迁移,个人感觉很有趣,算法理论比较简单,但任何算法想要做的更加的精细都是不容易的,因此本片文章仅仅做一个小小的展示。算法流程简介算法的执行过程为:先给定一张内容图和一张风格图,然后是输入一张含有随机像素的一张图片。三张图片经过VGG16网络提取特征图通过计算两两特征图之间的损失值,对损失值进行优化,可...
2019-11-09 18:42:40 260
原创 VGGNet 16
VGGNetVGGNet使用3*3卷积核,这与AlexNet支持的大的卷积核在浅层网络支持的结构是相反的。VGGNet使用小的卷积核,但是使用较深的网络结构,感受野是大的。如图:全连接转卷积VGGNet 网络架构VGGNet网络模型解析VGGNet架构详情:输入层Block1 ~ Block5全连接层 FC1, FC2输出层 Softmax 函数keras 代码...
2019-11-08 19:22:57 388
原创 卷积操作(原理与实现)与Max pooling实现
前言关于卷积部分我自己了解的不少,这里我只记录不常见的知识。矩阵快速卷积简介:卷积操作是在图像中通过滑动窗口,逐像素进行矩阵计算,会消耗大量的计算资源去寻址和修改内存数据,因此最终的卷积操作并不是可我们认为的滑动窗口执行卷积操作,而是采用转为矩阵的方式进行快速计算,矩阵操作能在计算机中快速运算并且方便移植到GPU中,在实际生产环境中可以通过两步来完成卷积操作:(1) 使用Image to ...
2019-11-06 22:09:19 1770
原创 选择性搜索算法(Select search, SS) 算法详解
前言本文处于本人的好奇,尽管算法有些过时,当还是想了解算法大体是如何工作的。选择性搜索算法在RCNN中提取预选框,可这是怎么实现的呢,直接上代码。# -*- coding: utf-8 -*-import skimage.ioimport skimage.transformimport skimage.utilfrom skimage import segmentation, ut...
2019-11-06 20:48:13 3964
原创 可视化手写字体网络特征
前言从今天开始我将把侧重点放在实战上面,关于理论方面上面的知识自己了解的比较多,特别是理论公式的推导我比较感兴趣。利用LeNet5识别手写数据集LeNet5架构:img_input = Input(shape=input_shape) x = Conv2D(32, (3, 3), activation='relu', padding='same', name='conv1')(im...
2019-11-04 19:34:32 321 4
原创 数据预处理(代码实现)
前言本证主要相对深度学习的一些学习技巧做一些概括。图像数据对图像数据进行扩展的常用方法包括:对图像进行角度偏移,左右偏移,上下偏移,随机放大或则缩小,水平翻转。keras 数据预处理:# -*- coding: utf-8 -*-from keras.preprocessing.image import ImageDataGenerator, img_to_array, load_im...
2019-11-01 12:23:03 3399
原创 人工神经网络实践(手写反向传播)
前言上一篇文章讲了神经网络反向传播方法实现,现在我们把它具体的应用到项目中去。代码段我们选取sklearn中的医疗数据,作为我们实验对象。# -*- coding: utf-8 -*-import numpy as npfrom sklearn import datasetsimport sklearnimport matplotlib.pyplot as pltinput...
2019-10-30 12:37:42 625
原创 反向传播算法实现
前言学习机器学习的过程中对梯度下降法有了一些了解,深度学习有一个经典的反向传播算法,一直很想学习一下,今天读到一本好书,里面对于反向传播算法的解析很好理解。1、基本符号介绍:nln_lnl:表示网络的层数(第几层),n1n_1n1为输入层,nLn_LnL为输出层。sls_lsl:表示第lll层网络神经元的个数。fff:表示神经元的激活函数。w(l)w^{(l)}w(l):表示...
2019-10-24 09:24:54 781
原创 dimensionality reduction
降维主成分分析用于将多元数据集分解为一系列连续正交分量,这些分量解释了最大方差。引入:当想要将二维数据降为一维时可以观察到数据降维与线性回归的相似性。对于上述左侧图形而言,是求样本点与预测值的垂直线距离,而右图需要计算的是样本点到直线的垂直线距离的最小值,求解出来之后再做投影处理。PCA:寻找一个低纬度的平面对数据进行投影,以便最小化每个点与投影后的对应点之间的距离的平方值。PCA...
2019-10-20 15:24:25 323
原创 神经网络的风格转换
what is neural style transfer?什么是神经风格转换。sample: 转换图像风格。深度卷积网格Visualizing what a deep network is learning?Neural style transfer cost functiondefine cost function: J(G)=αJcontent(C,G)+βJStyle(...
2019-10-20 15:23:25 326
原创 《深度学习》-线代基础
前言:花了一个多月参加一个比赛,真的是心力交瘁,累!刚开始接触到深度学习的时候就知道花书了,看过一眼,但当时初见难免对这本算法有些畏惧,如今几个月过去了,对部分的算法也有些许的了解,抽出闲暇时间,休闲读。主要是大牛写的书,希望读的时候能有一个思维的跳跃。我将怀着一颗敬畏之心阅读每一本书。线性相关和生成子空间公式引入:Ax=∑ixiA:,iAx = \sum_ix_iA_{:,i}Ax=i∑...
2019-10-20 15:22:46 328
原创 《深度学习》- 概率与信息论
概率论关于概率:概率直接与事件发生的频率相联系,被称为频率派概率(frequentist probability);还有一种例如医生诊断病人的病症,此时的概率可以表示为一种信任度(degree of belief)涉及到了确定性水平,被称为贝叶斯概率(Bayesian probablity)。归一化:∑x∈x\sum_{x\in x}∑x∈x P(x) = 1这条性质被称为归一化,...
2019-10-20 15:22:28 209
原创 《深度学习》-数值计算
上溢下溢与softmax函数下溢:当接近零的数被四舍五入为零时发生下溢。上溢:极具破坏力的数字错误形式是上溢。softmax函数公式softmax(x)i=exp(xi)∑j=1nexp(xj)softmax(x)_i = \frac{exp(x_i)}{\sum_{j=1}^nexp(x_j)}softmax(x)i=∑j=1nexp(xj)exp(xi)上溢和下溢可以通...
2019-10-20 15:22:06 243
原创 线性最小二乘法
example:f(x)=12∥Ax−b∥22f(x) = \frac{1}{2}\parallel Ax - b \parallel_2^2f(x)=21∥Ax−b∥22最小化下式时x的值。首先计算:▽xf(x)=AT(Ax−b)=ATAx−ATb\bigtriangledown_xf(x) = A^T(Ax - b) =A^TAx - A^Tb▽xf(x)=AT(Ax−b)=AT...
2019-10-20 15:20:43 288
原创 目标检测
前言之前我都是使用深度学习做图像的分类,而今天要去见识一下目标检测的威力了。基本认识分类:是什么?定位:在哪里?是什么?(单个目标)检测:在哪里?分别是什么?(多个目标)对于人来说给我们一张图像很容易定位目标物的位置,而对于机器而言是怎么进行图像的分类与定位的呢。传统的目标检测一般是使用滑动窗口框口的框架,主要包括三个步骤。(1)利用不同尺寸的滑动窗口框住图中的某一部分作为候选区...
2019-10-07 10:26:08 399
原创 计算机视觉基础
前言由于个人目前对于计算机视觉有比较大的兴趣,想写一篇关于CNN的文章总结学到的东西,参考花书,以及一些比较权威的视频课。基本概念卷积 :是对两个实变函数的一种算术运算。卷积神经网络一般是用来处理具有类似网格结构的数据的神经网络,例如时间序列,和图像素数据。关于时间序列一般公式:s(t)=(x∗w)(t)s(t) = (x*w)(t)s(t)=(x∗w)(t)星号表示卷积运算。x...
2019-10-06 21:10:49 260
激活函数
为什么引入激活函数如果不用激活函数,在这种情况下每一层输出都是上层输入的线性函数。容易验证,无论神经 网络有多少层,输出都是输入的线性组合,与没有隐藏层效果相当,这种情况就是最原始的感知机了。因此引入非线性函数作为激活函数,这样深层神经网络就有意义了(不再是输入的线性组合,可以逼近任意函数)。最早的想法是sigmoid函数或者tanh函数,输出有界,很容易充当下一层输入。relu函数的优缺点...
2019-10-06 20:55:06 149
原创 深度学习训练技巧
数据预处理数据预处理在传统机器学习中非常重要,在深度学习的应用中同样重要,事实上,将数据进行归一化(normalization)或者白化(Whitening)处理后,算法效果往往可以得到明显提升。实际上,预处理往往和所采取的具体模型以及面对的具体数据相关,采用哪种预处理方法需要结合实际进行考虑。归一化减均值最简单的归一化方法,就是所有样本都减去总体数据的样本的平均值,这种初始化方法适用...
2019-09-27 16:29:21 425
原创 深度学习优化算法
前言个人对于深度学习的优化一直是未知,所以对此一直充满了疑问,今天休闲读的时候刚好看到书上有关于优化算法的汇总,为方便今后查阅将它copy下来。SGD(随机梯度下降算法)参数: 学习率 η\etaη初始化: θ\thetaθwhile 停止条件未满足 do:从 训练数据中抽取m条数据{x(1),x(2),x(3),...,x(m)}\{x^{(1)}, x^{(2)}, x^{(3)...
2019-09-26 19:20:25 152
原创 神经元模型
线性神经元Linear Neuron 是指输出和输入呈线性关系的一种简单的模型。他实现的是输入信息的完全传到,在现实中,由于缺乏对信息的整合而基本不被使用,仅作为一个概念基础。线型阈值神经元能够实现简单地逻辑运算机制,就我个人而言目前还未在教材中看到应用。Sigmoid 神经元Sigmoid神经元可以使输出平滑的限制在0~1的范围内,靠近0的范围接近线性,远离0的区域为非线性,可以将实数...
2019-09-26 15:57:15 2735
原创 Ensemble methods
集成方法优点:集成方法的目标是将多个基本估计器的预测与给定的学习算法相结合,从而提高对单个估计器的通用性(泛化能力)。将多个估计器的预测与给定的学习算法相结合,从而提高对单个估计其的通用性。bagging 每个预测器使用算法相同,但是在不同的训练集上进行训练,采样时如果将样本不放回叫做bagging.有放回的叫做pasting。极端随机树随机森林在分裂结点的时候,仅考虑到一个随机...
2019-08-09 10:31:23 376
原创 Decision tree
Decision Tree是一种用于分类和回归的监督学习方法,目标是创建一个模型,通过学习从数据特性推断出的简单决策规则来预测目标变量的值。优点易于理解和解释,决策树可以被可视化。几乎不需要数据准备,其他技术通常需要数据规范化,但是请注意,这个模块不支持丢失值,需要创建虚拟变量并删除控制。使用决策树的成本是用于训练树的数据点数量的对数。能够处理多输出问题。使用白盒模型,如果给定的情...
2019-07-26 08:51:37 203
原创 SVM
notes支持向量机应用领域分类预测异常值的监测。优点and缺点优点:使用与高维空间当特征数大于样本数时,它依然有效。可以为决策函数指定不同的内核函数。缺点:如果特征个数远远大于样本数,核函数应该避免过拟合,正则化项成为关键。SVM不直接提供概率估计,如果想要求概率需要使用昂贵的五倍交叉验证。关于SVM的推导过程假设二维空间中有一条直线:Ax + By + c ...
2019-07-25 14:35:22 140
原创 logistics regression
逻辑回归用于估算一个实例属于某个特定类别的概率。logistic回归损失函数推导罗列一些基本的公式:p^=hθ(X)=σ(θT⋅X)\hat{p} = h_\theta(X) = \sigma(\theta^T\cdot X)p^=hθ(X)=σ(θT⋅X)逻辑模型是一个sigmoid函数记作σ(⋅)\sigma(\cdot)σ(⋅),它的输出为一个0-1之间数字。逻辑函数:...
2019-07-24 14:50:20 147
原创 normal linear model
正则化线性模型线性模型减少过度拟合的方法之一对模型正则化,它拥有的自由度越低,就越不容易过度拟合数据,比如将多项式模型正则化的简单方法降低多项式的阶数。比如将多项式正则化的简单化方法就是降低多项式的阶数。 【 正则化:约束它】而对线性模型来说,正则化通常通过约束模型的权重来实现的。岭回归岭回归是线性模型的正则化版本,在成本函数中增加一个α∑i=1nθi2\alpha\sum_{i=1}^n...
2019-07-23 15:55:28 545
原创 regression and classification
meaching learning从接触机器学习到先在应该快有一个对月了, 可以说学习的过程十分痛苦, 但幸运的是我有的耐力还是很好的,并且有一颗平静的心,但慢慢的我对这个学科越来越兴趣了。每天起床都感觉自己好菜啊,成为支持我完成学习的动力。因为机器学习里面的包,函数都是由英文直译的或者是缩写,所以一些关键的名词我会用英文表示。linearRegression线性回归概念: 由若干输入(样本...
2019-07-22 15:14:48 227
原创 网络数据与网络错误
字符与字符串字节的特性:位(bit)是信息的最小单位,每位可以是0或1,在电子学中,位一般通过高电压和低电压来实现。8位组成1字节(byte).a = 0b1100010 print(a)#980b1100010 == 0o142 == 98 == 0x62#true可以把这些数的列表作为参数传给bytes(),这样就能够将其转化为字节字符串,通过字节字符串,可以将其转换为...
2019-06-20 20:10:01 425
原创 GUI编程
图形用户界面(Graphical User Insterface ,GUI)让GUI程序启动和运行起来需要以下5个主要步骤。1.导入Tkinter模块2.创建一个顶层窗口对象,用于容纳整个GUI应用。3.在顶层窗口之上(或其中)构建所有的GUI组件(及其功能)4.通过底层的应用代码将这些GUI组件连接起来。5.进入主事件循环。窗口和控件在GUI编程中,顶层的根窗口包含组成GUI应...
2019-05-31 22:59:37 1329
原创 python文件操作(明细)
关于读取文件的一些小细节的总结python中文件的读取写入比较方便,当时难免在使用的时候回出现错误,接下来就对该内容做一个总结获取系统默认编码import sysprint(sys.getdefaultencoding())输出结果:utf-8#type : str在读取文本的时候,会使用系统默认的编码但是呢,我们也可以自己更改编码格式。open('XXX', encod...
2019-05-29 21:18:21 212
原创 office协程
音乐播放器:import mp3playimport timefile = "D:\\CloudMusic\\All Time Low.mp3"mp = mp3play.load(file)#加载路径mp.play()time.sleep(30)经观察:mp3play是通过python2写的所以要在python下运行“-- coding: UTF-8 --”协程:控制函数阶段...
2019-05-18 12:49:45 108
原创 简单UI
tkinter 模块import tkintermytk = tkinter.Tk()mytk.title("Hello python")mytk.geometry("600x800+0+0")#600:宽度, 800:高度,x,y左上角坐标。mytk.mainloop() #运行起来input模块:import tkinterimport osdef go(): pr...
2019-05-17 08:42:05 265
原创 动态渲染页面爬取
所谓动态渲染页面爬取,就是模拟浏览器的运行方式,这样就可以做到在浏览器中看到是什么样,爬取的源码就是什么样,也就是可见即可爬。Selenium的使用selenium 是一个自动化测试工具,利用它就可以驱动浏览器执行特定的动作,如点击,下拉等操作,同时还可以获取浏览器当前呈现的页面的源代码,对于一些JavaScript动态渲染的页面来说,此种爬取方式非常的有效。...
2019-05-10 17:42:19 1337 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人