题目
把只包含质因子2、3和5的数称作丑数(Ugly Number)。例如6、8都是丑数,但14不是,因为它包含质因子7。 习惯上我们把1当做是第一个丑数。求按从小到大的顺序的第N个丑数。
思路
-
一个丑数的因子只有2,3,5,那么丑数p = 2 ^ x * 3 ^ y * 5 ^ z,换句话说一个丑数一定由另一个丑数乘以2或者乘以3或者乘以5得到。
那么我们从1开始乘以2,3,5,就得到2,3,5三个丑数,在从这三个丑数出发乘以2,3,5就得到4,6,10;6,9,15;10,15,25九个丑数,我们发现这种方法容易得到重复的丑数,而且我们题目要求第N个丑数,这样的方法得到的丑数也是无序的。那么我们可以维护三个队列:- (1)丑数数组: 1
乘以2的队列:2
乘以3的队列:3
乘以5的队列:5
选择三个队列头最小的数2加入丑数数组,同时将该最小的数乘以2,3,5放入三个队列; - (2)丑数数组:1,2
乘以2的队列:4
乘以3的队列:3,6
乘以5的队列:5,10
选择三个队列头最小的数3加入丑数数组,同时将该最小的数乘以2,3,5放入三个队列; - (3)丑数数组:1,2,3
乘以2的队列:4,6
乘以3的队列:6,9
乘以5的队列:5,10,15
选择三个队列头里最小的数4加入丑数数组,同时将该最小的数乘以2,3,5放入三个队列; - (4)丑数数组:1,2,3,4
乘以2的队列:6,8
乘以3的队列:6,9,12
乘以5的队列:5,10,15,20
选择三个队列头里最小的数5加入丑数数组,同时将该最小的数乘以2,3,5放入三个队列; - (5)丑数数组:1,2,3,4,5
乘以2的队列:6,8,10,
乘以3的队列:6,9,12,15
乘以5的队列:10,15,20,25
选择三个队列头里最小的数6加入丑数数组,但我们发现,有两个队列头都为6,所以我们弹出两个队列头,同时将12,18,30放入三个队列;
……………………
- (1)丑数数组: 1
-
为什么分三个队列?
丑数数组里的数一定是有序的,因为我们是从丑数数组里的数乘以2,3,5选出的最小数,一定比以前未乘以2,3,5大,同时对于三个队列内部,按先后顺序乘以2,3,5分别放入,所以同一个队列内部也是有序的; -
为什么比较三个队列头部最小的数放入丑数数组?
因为三个队列是有序的,所以取出三个头中最小的,等同于找到了三个队列所有数中最小的。 -
实现思路:
我们没有必要维护三个队列,只需要记录三个指针显示到达哪一步;“|”表示指针,arr表示丑数数组;
(1)1
|2
|3
|5
目前指针指向0,0,0,队列头arr[0] * 2 = 2, arr[0] * 3 = 3, arr[0] * 5 = 5
(2)1 2
2 |4
|3 6
|5 10
目前指针指向1,0,0,队列头arr[1] * 2 = 4, arr[0] * 3 = 3, arr[0] * 5 = 5
(3)1 2 3
2| 4 6
3 |6 9
|5 10 15
目前指针指向1,1,0,队列头arr[1] * 2 = 4, arr[1] * 3 = 6, arr[0] * 5 = 5
代码
import java.util.ArrayList;
public class Solution {
public int GetUglyNumber_Solution(int index) {
if(index <= 0) return 0;
ArrayList<Integer> list = new ArrayList<>();
list.add(1);
int p2 = 0, p3 = 0, p5 = 0;
int min = 0;
while(list.size() < index){
int n2 = list.get(p2)*2;
int n3 = list.get(p3)*3;
int n5 = list.get(p5)*5;
min = Math.min(n2, Math.min(n3, n5));
list.add(min);
if(min == n2) p2++;
if(min == n3) p3++;
if(min == n5) p5++;
}
return list.get(list.size() - 1);
}
}