高等数学-向量代数与空间解析几何

一.向量代数

     R^2  或  R^3 中的向量可以表示为:

              或  

         其长度为:  

    向量运算(以R^3  为例):  记  a = , b= ,  c= 

       1.向量的加法运算

                 

       2.数乘

                  

       3.数量积

                   

       4.向量积

                     

        5.混合积

                    

二.空间解析几何

     1.空间平面的表达形式:

                     ,其中,n = Ai + Bj + Ck 称为 法向量。

     2.空间直线的表达形式

                      , 其中,  称为 方向向量

       3.空间曲面的表达形式:

                            显函数形式:   

                            隐函数形式:   

                            参函数形式:    

        4.空间曲线的表达形式

                             参函数表达形式: 

                             空间曲线作为两个曲面的交线: 


2019.3.5 10:25 补充:

   空间平面方程(曲面的一种,由圆锥曲线类推而来):

          一般方程;

          点法式方程;

   空间直线方程

           一般方程;

          对称式方程(点向式方程);

         参数方程;

    两平面夹角

           

    两直线夹角

           

     直线平面夹角

            

     点面距离

             

     平面束

            通过定 直线 的所有平面的全体。

            线在面上的投影,即  该线的 平面束 与 该面的交线。 

    空间直线共面的充要条件

           两直线的 方向向量的 向量积  与  两直线定点向量 相互垂直。 

            简言之:   两个方向向量,一个定点向量 ,三向量共享一个法向量。 


2019.3.9   补充:

   切向量,法向量 的求法:


2019.3.9 补充

   内外法向量:


2019.3.16 补充:

9种二次曲面的标准方程 及 形状:

   1.椭圆锥面

                  

           形状解析:  以垂直于 z轴的平面,切该 曲面,得到 多个 长短轴比例不变 的椭圆。

    2.椭球面

               

            形状解析:  将 xOz面 的 椭圆, 绕 z轴  旋转,然后 让 该曲面 沿 y  维  伸缩  b/a倍。 

    3.单页双曲面

               

            形状解析: 将 xOz上的 双曲线,绕z轴旋转,将该曲面  沿 y 维 伸缩 b/a倍。 

    4.双叶双曲面

                

           形状解析:   将 xOz上的 双曲线,绕x轴旋转,将该曲面  沿 y 维 伸缩 a/c倍。

   5.椭圆抛物面

                 

           形状解析:  将 xOz上的 抛物线,绕z轴旋转,将该曲面  沿 y 维 伸缩 b/a倍。

   6.双曲抛物面

                  

          形状解析:  马鞍面(底部是平的)。

    7,8,9.椭圆柱面,双曲柱面,抛物柱面;

           形式同  2元方程。 

  • 9
    点赞
  • 55
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值