7-4 矩阵A乘以B (15 分)
给定两个矩阵A和B,要求你计算它们的乘积矩阵AB。需要注意的是,只有规模匹配的矩阵才可以相乘。即若A有R
a
行、C
a
列,B有R
b
行、C
b
列,则只有C
a
与R
b
相等时,两个矩阵才能相乘。
输入格式:
输入先后给出两个矩阵A和B。对于每个矩阵,首先在一行中给出其行数R和列数C,随后R行,每行给出C个整数,以1个空格分隔,且行首尾没有多余的空格。输入保证两个矩阵的R和C都是正数,并且所有整数的绝对值不超过100。
输出格式:
若输入的两个矩阵的规模是匹配的,则按照输入的格式输出乘积矩阵AB,否则输出Error: Ca != Rb,其中Ca是A的列数,Rb是B的行数。
输入样例1:
2 3
1 2 3
4 5 6
3 4
7 8 9 0
-1 -2 -3 -4
5 6 7 8
输出样例1:
2 4
20 22 24 16
53 58 63 28
输入样例2:
3 2
38 26
43 -5
0 17
3 2
-11 57
99 68
81 72
输出样例2:
Error: 2 != 3
#include <stdio.h>
int main(int argc, char *argv[])
{
int n1,m1,n2,m2,a[1000][1000],b[1000][1000];
scanf("%d %d",&n1,&m1);
for(int i=1;i<=n1;i++){
for(int j=1;j<=m1;j++) scanf("%d",&a[i][j]);
}
scanf("%d %d",&n2,&m2);
for(int i=1;i<=n2;i++){
for(int j=1;j<=m2;j++) scanf("%d",&b[i][j]);
}
if(m1!=n2) printf("Error: %d != %d",m1,n2);
else{
printf("%d %d\n",n1,m2);
for(int i=1;i<=n1;i++){
for(int j=1;j<=m2;j++){
int s=0;
for(int k=1;k<=m1;k++) s+=a[i][k]*b[k][j];
printf("%d",s);
if(j!=m2) printf(" ");
}
printf("\n");
}
}
return 0;
}