复习
墨藍
小菜一枚
展开
-
在ubuntu用cmake学习《opencv3编程入门》
浅墨大神的书《opencv3编程入门》中的代码是在Visual Studio上运行的,当然我们也可以在ubuntu上运行。在安装opencv的前提下,我们只需要用到里面的cpp文件就好了。自己新建一个文件夹,把其中的cpp文件粘进去,再设置个配置文件。配置文件的格式借鉴slam14讲第5讲里面的格式:# 声明要求的 cmake 最低版本cmake_minimum_required( VE...原创 2018-08-21 19:34:13 · 592 阅读 · 0 评论 -
学习FPN和retinanet的网络结构
多尺度上目标识别是计算机视觉领域的一个基本挑战,解决这一挑战的基本方法就是“基于图像金字塔的特征金字塔(简称为特征图像金字塔)”,这些金字塔具有尺度不变性,可以通过扫描位置和金字塔层来检测大范围上的尺度。将图像金字塔各层提取特征的主要好处就在于产生了一个多尺度特征表示,这个表示的所有层语义很强,包括高精度的层。尽管这样,然而,对每层进行特征提取有很明显的限制,Inference time将急剧上...原创 2018-12-04 11:15:43 · 15778 阅读 · 5 评论 -
R-CNN系列论文总结
借鉴博客:https://www.cnblogs.com/skyfsm/p/6806246.htmlhttps://www.cnblogs.com/gujianhan/p/6035514.html1.基于深度学习的目标检测普通的深度学习算法主要用来做分类,而在实际应用中还有目标定位和目标检测(其实还有语义分割——semantic segmentation,实例分割——instanc...转载 2018-11-09 10:06:00 · 2536 阅读 · 0 评论 -
学习yolo
首先是yolo1,英文全称就是You Only Look Once,是典型的end-to-end结构,输入一张图像,回归出位置和置信率。其网络结构如下: 24个卷积层加两个全连接层,其相应结构部分的代码实现如下:def build_network(self, images, num_outputs...2018-12-14 20:52:45 · 322 阅读 · 0 评论 -
yolo3的学习
yolo3与SSD、retinaNet等在MAP和时间上的对比:(关于MAP:MAP的全称为mean average precision,也就是均值平均精度,好多时候都直接称为准确度,它是的AP取的均值,比如在一个识别任务里面会有好多类目标,而每一类里面有多个不同的具体目标,每个目标的预测结果与真实结果之间的差别用precision来表示,对这一类平均就是AP,对每一类取均值,那就是MAP,...原创 2018-12-27 11:18:23 · 1123 阅读 · 0 评论 -
图像处理基础知识简要概括
1.形态学运算将图像与任意内核进行卷积。作用:1)消除噪声。 2)分割独立的图像元素,以及连接相邻的元素。腐蚀:内核划过图像,将内核覆盖区域的最小像素提取膨胀:内核划过图像,将内核覆盖区域的最大像素提取开运算:内核对图像先腐蚀再膨胀,使图像的轮廓变得光滑,断开较窄的狭颈和消除细的突出物。闭运算:内核对图像先膨胀再腐蚀,使图像的轮廓变得光滑,弥合狭窄的间断和细长的沟壑...原创 2019-08-08 10:04:34 · 1020 阅读 · 0 评论