数据库进阶篇

数据库进阶篇

存储引擎

存储引擎简介

存储引擎就是存储数据、建立索引、更新/查询数据等技术的实现方式。

存储引擎是基于表的,而不是基于库的,所以存储引擎也可以被称为表类型。

  1. 在创建表时,指定存储引擎:(MySQL默认为InnoDB)
CREATE table 表名(
    字段1 字段1类型 [comment 字段1注释],
    字段2 字段2类型 [comment 字段2注释],
    字段3 字段3类型 [comment 字段3注释],
    ...
    字段n 字段n类型 [comment 字段n注释]
)ENGINE=InnoDB [comment 表注释];
  1. 查看当前数据库支持的存储引擎
SHOW ENGINES;

InnoDB

  1. 介绍
    InnoDB 是一种兼顾高可靠性和高性能的通用存储引擎,在 MySQL 5.5 之后,InnoDB 是默认的 MySQL 存储引擎。

  2. 特点

    • DML操作遵守ACID模型,支持事务。
    • 行级锁,提高并发访问。
    • 支持外键 foreign key 约束, 保证数据的完整性和正确性。
  3. 文件
    xxx.ibd: xxx代表的是表名, innoDB引擎的每张表都会对应这样一个表空间,存储该表的表结构(frm、 sdi)、 数据和索引。

索引

索引概述

索引是帮助MySQL高效获取数据的数据结构(有序)。在数据之外, 数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构上实现高级查找算法,这种数据结构就是索引。

优点:

  1. 提高数据检索的效率,降低数据库的IO成本。
  2. 通过索引列对数据进行排序,降低数据排序的成本,降低cpu的消耗。

缺点:

  1. 索引列也是要占用空间的。
  2. 索引大大提高了查询效率,同时却也降低更新表的速度,如对表进行insert、update、delete时,效率降低。

索引结构

MySQL的索引是在存储引擎实现的, 不同的存储引擎有不同的结构,主要包含以下几种:

索引结构描述
B+Tree索引最常见的索引类型,大部分引擎都支持B+树索引
Hash索引底层数据结构是用哈希表实现的,只有精确匹配索引列的查询才有效,不支持范围查询
R-tree(空间索引)主要用域地理空间数据类型,较少使用
Full-text(全文索引)是一种通过建立倒排索引,快速匹配文档的方式

为什么InnoDB存储引擎选择使用B+tree索引结构?

  1. 先对与二叉树,层级更少,搜索效率高;
  2. 对应B-tree,无论是叶子节点还是非叶子节点,都会保存数据,这样导致一页中存储的键值减少,指针跟着减少,要同样保存大量数据,只能增加树的高度,导致性能降低。
  3. 相对Hash索引(只支持等值匹配),B+tree支持范围匹配及排序操作。

索引分类

分类含义特点关键字
主键索引针对表中主键创建的索引默认自动创建,只能有一个primary
唯一索引避免同一表中某数据列中的值重复可以有多个unique
常规索引快速定位特定数据可以有多个
全文索引全文索引查找的是文本中的关键词,而不是比较索引中的值可以有多个fulltext

在InnoDB存储引擎中,根据索引的存储形式,又可分为以下两种:

分类含义特点
聚集索引将数据存储与索引放到一块,索引结构的叶子节点保存了行数据必须有,而且只能有一个
二级索引将数据与索引分开存储,索引结构的叶子节点关联的是对应的主键可以存在多个

聚集索引选取规则:

  1. 如果存在主键,主键索引就是聚集索引。
  2. 如果不存在主键,将使用第一个唯一索引作为聚集索引。
  3. 如果表没有主键,或没有合适的唯一索引,则InnoDB会自动生成一个rowid作为隐藏的聚集索引。

回表查询:现走二级索引找的对应的主键值,再根据主键值到聚集索引中拿到这一行的行数据。

索引语法

1. 创建索引
create [unique|fulltext] index index_name on table_name(index_col_name,...);

2. 查看索引
show index from table_name;

3. 删除索引
drop index index_name on table_name;

SQL性能分析

  • SQL执行频率
    MySQL客户端连接成功后,通过 show [session|global] status 命令可以提供服务器状态信息。通过如下指令,可以查看当前数据库的insert, update, delete, select的访问频率:

    show global status like 'Com_______';
    
  • 慢查询日志
    慢查询日志记录了所有执行时间超过指定参数(long_query_time, 单位:秒,默认10秒)的所有SQL语句的日志。
    MySQL的慢查询日志默认没有开启,需要在MySQL的配置文件(/etc/my.cnf)中配置如下信息:

    #开启MySQL慢日志查询开关
    slow_query_log = 1;
    
    #设置慢日志的时间为2秒,SQL语句执行时间超过2秒,就会视为慢查询,记录慢查询日志
    long_query_time = 2;
    
  • profile详情
    show profile 能够在做SQL优化时帮助我们了解时间都耗费到哪里了。通过have_profiling参数,能够看到当前MySQL是否支持profile操作:

    select @@have_profiling;
    

    默认profiling是关闭的,可以通过set语句在session/global级别开启profiling:

    set profiling = 1;
    
    #查看开关是否打开:
    select @@profiling;
    
    #查看每一条SQL的耗时基本情况
    show profiles;
    
    #查看指定query_id的SQL语句各阶段的耗时情况
    show profile for query query_id;
    
    #查看query_id的SQL语句cpu的使用情况
    show profile cpu for query query_id;
    
  • explain 执行计划
    explain 或 desc 命令获取MySQL如何执行select语句的信息,包括在select语句执行过程中表如何连接和连接的顺序。

    explain select 字段列表 from 表名 where 条件;
    

索引的使用

  • 最左前缀法则
    如果索引了多列(联合索引), 要遵守最左前缀法则。最左前缀法则指的是查询从索引的最左列开始,并且不跳过索引中的列。如果跳过某一列,索引将部分失效(后面的字段索引失效)

  • 范围查询
    联合索引中,出现范围查询( >, < ),范围查询右侧的列索引会失效。

    (>=, <=) 不会使右侧索引失效(查询时尽量使用)。

  • 索引列运行
    不要在索引列上进行运算操作,索引将失效

  • 字符串不加引号
    字符串类型字段使用时,不加引号,索引将失效

  • 模糊查询(%like%)
    如果仅仅是尾部模糊匹配,索引不会失效。如果是头部模糊匹配,索引失效。

  • or连接的条件
    用or分割开的条件, 如果or前的条件中的列有索引,而后面的列中没有索引,那么涉及的索引都不会被用到。

  • 数据分布影响
    如果mysql评估使用索引比全表更慢,则不使用索引。

  • SQL提示
    SQL提示,是优化数据库的一个重要手段,简单来说,就是在SQL语句中加入一些人为的提示来达到优化操作的目的。

# use index(建议使用索引) :
explain select * from 表名 use index(索引名) where ...

# ignore index(忽略索引):
explain select * from 表名 ignore index(索引名) where ...

# force index(强制使用索引):
explain select * from 表名 force index(索引名) where ...

  • 覆盖索引
    尽量使用覆盖索引(查询使用了索引,并且需要返回的列,在该索引中已经全部能够找到),减少select*。

否则非主键会先二级索引查询,然后回表查询(联合索引)

  • 前缀索引
    当字段类型为字符串(varchar, text等)时, 有时候需要索引很长的字符串,这会让索引变得很大,查询时,浪费大量的磁盘IO,影响查询效率。此时可以只将字符串的一部分前缀,建立索引,这样可以大大节约索引空间,从而提高索引效率。
    1. 语法
    # 提取column前n个字符作为前缀索引:
    create index idx_xxxx on table_name(column(n)); 
    
  1. 前缀长度
    可以根据索引的选择性来决定,而选择性是指不重复的索引值(基数)和数据表的记录总数的比值,索引选择性越高则查询效率越高,唯一索引的选择性是1,这是最好的索引选择性,性能也是最好。

    select count(distinct email)/count(*) from 表名;
    select count (distinct substring(email, 1, 5)/count(*)) from 表名;
    
  • 单列索引与联合索引
    在业务场景中,如果存在多个查询条件,考虑针对于查询字段建立索引时,建议建立联合索引,而非单列索引。

联合索引创建需要考虑顺序(最左匹配法则)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值