数据库进阶篇
存储引擎
存储引擎简介
存储引擎就是存储数据、建立索引、更新/查询数据等技术的实现方式。
存储引擎是基于表的,而不是基于库的,所以存储引擎也可以被称为表类型。
- 在创建表时,指定存储引擎:(MySQL默认为InnoDB)
CREATE table 表名(
字段1 字段1类型 [comment 字段1注释],
字段2 字段2类型 [comment 字段2注释],
字段3 字段3类型 [comment 字段3注释],
...
字段n 字段n类型 [comment 字段n注释]
)ENGINE=InnoDB [comment 表注释];
- 查看当前数据库支持的存储引擎
SHOW ENGINES;
InnoDB
-
介绍
InnoDB 是一种兼顾高可靠性和高性能的通用存储引擎,在 MySQL 5.5 之后,InnoDB 是默认的 MySQL 存储引擎。 -
特点
- DML操作遵守ACID模型,支持事务。
- 行级锁,提高并发访问。
- 支持外键 foreign key 约束, 保证数据的完整性和正确性。
-
文件
xxx.ibd: xxx代表的是表名, innoDB引擎的每张表都会对应这样一个表空间,存储该表的表结构(frm、 sdi)、 数据和索引。
索引
索引概述
索引是帮助MySQL高效获取数据的数据结构(有序)。在数据之外, 数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构上实现高级查找算法,这种数据结构就是索引。
优点:
- 提高数据检索的效率,降低数据库的IO成本。
- 通过索引列对数据进行排序,降低数据排序的成本,降低cpu的消耗。
缺点:
- 索引列也是要占用空间的。
- 索引大大提高了查询效率,同时却也降低更新表的速度,如对表进行insert、update、delete时,效率降低。
索引结构
MySQL的索引是在存储引擎实现的, 不同的存储引擎有不同的结构,主要包含以下几种:
索引结构 | 描述 |
---|---|
B+Tree索引 | 最常见的索引类型,大部分引擎都支持B+树索引 |
Hash索引 | 底层数据结构是用哈希表实现的,只有精确匹配索引列的查询才有效,不支持范围查询 |
R-tree(空间索引) | 主要用域地理空间数据类型,较少使用 |
Full-text(全文索引) | 是一种通过建立倒排索引,快速匹配文档的方式 |
为什么InnoDB存储引擎选择使用B+tree索引结构?
- 先对与二叉树,层级更少,搜索效率高;
- 对应B-tree,无论是叶子节点还是非叶子节点,都会保存数据,这样导致一页中存储的键值减少,指针跟着减少,要同样保存大量数据,只能增加树的高度,导致性能降低。
- 相对Hash索引(只支持等值匹配),B+tree支持范围匹配及排序操作。
索引分类
分类 | 含义 | 特点 | 关键字 |
---|---|---|---|
主键索引 | 针对表中主键创建的索引 | 默认自动创建,只能有一个 | primary |
唯一索引 | 避免同一表中某数据列中的值重复 | 可以有多个 | unique |
常规索引 | 快速定位特定数据 | 可以有多个 | |
全文索引 | 全文索引查找的是文本中的关键词,而不是比较索引中的值 | 可以有多个 | fulltext |
在InnoDB存储引擎中,根据索引的存储形式,又可分为以下两种:
分类 | 含义 | 特点 |
---|---|---|
聚集索引 | 将数据存储与索引放到一块,索引结构的叶子节点保存了行数据 | 必须有,而且只能有一个 |
二级索引 | 将数据与索引分开存储,索引结构的叶子节点关联的是对应的主键 | 可以存在多个 |
聚集索引选取规则:
- 如果存在主键,主键索引就是聚集索引。
- 如果不存在主键,将使用第一个唯一索引作为聚集索引。
- 如果表没有主键,或没有合适的唯一索引,则InnoDB会自动生成一个rowid作为隐藏的聚集索引。
回表查询:现走二级索引找的对应的主键值,再根据主键值到聚集索引中拿到这一行的行数据。
索引语法
1. 创建索引
create [unique|fulltext] index index_name on table_name(index_col_name,...);
2. 查看索引
show index from table_name;
3. 删除索引
drop index index_name on table_name;
SQL性能分析
-
SQL执行频率
MySQL客户端连接成功后,通过 show [session|global] status 命令可以提供服务器状态信息。通过如下指令,可以查看当前数据库的insert, update, delete, select的访问频率:show global status like 'Com_______';
-
慢查询日志
慢查询日志记录了所有执行时间超过指定参数(long_query_time, 单位:秒,默认10秒)的所有SQL语句的日志。
MySQL的慢查询日志默认没有开启,需要在MySQL的配置文件(/etc/my.cnf)中配置如下信息:#开启MySQL慢日志查询开关 slow_query_log = 1; #设置慢日志的时间为2秒,SQL语句执行时间超过2秒,就会视为慢查询,记录慢查询日志 long_query_time = 2;
-
profile详情
show profile 能够在做SQL优化时帮助我们了解时间都耗费到哪里了。通过have_profiling参数,能够看到当前MySQL是否支持profile操作:select @@have_profiling;
默认profiling是关闭的,可以通过set语句在session/global级别开启profiling:
set profiling = 1; #查看开关是否打开: select @@profiling; #查看每一条SQL的耗时基本情况 show profiles; #查看指定query_id的SQL语句各阶段的耗时情况 show profile for query query_id; #查看query_id的SQL语句cpu的使用情况 show profile cpu for query query_id;
-
explain 执行计划
explain 或 desc 命令获取MySQL如何执行select语句的信息,包括在select语句执行过程中表如何连接和连接的顺序。explain select 字段列表 from 表名 where 条件;
索引的使用
-
最左前缀法则
如果索引了多列(联合索引), 要遵守最左前缀法则。最左前缀法则指的是查询从索引的最左列开始,并且不跳过索引中的列。如果跳过某一列,索引将部分失效(后面的字段索引失效)。 -
范围查询
联合索引中,出现范围查询( >, < ),范围查询右侧的列索引会失效。(>=, <=) 不会使右侧索引失效(查询时尽量使用)。
-
索引列运行
不要在索引列上进行运算操作,索引将失效。 -
字符串不加引号
字符串类型字段使用时,不加引号,索引将失效。 -
模糊查询(%like%)
如果仅仅是尾部模糊匹配,索引不会失效。如果是头部模糊匹配,索引失效。 -
or连接的条件
用or分割开的条件, 如果or前的条件中的列有索引,而后面的列中没有索引,那么涉及的索引都不会被用到。 -
数据分布影响
如果mysql评估使用索引比全表更慢,则不使用索引。 -
SQL提示
SQL提示,是优化数据库的一个重要手段,简单来说,就是在SQL语句中加入一些人为的提示来达到优化操作的目的。
# use index(建议使用索引) :
explain select * from 表名 use index(索引名) where ...
# ignore index(忽略索引):
explain select * from 表名 ignore index(索引名) where ...
# force index(强制使用索引):
explain select * from 表名 force index(索引名) where ...
- 覆盖索引
尽量使用覆盖索引(查询使用了索引,并且需要返回的列,在该索引中已经全部能够找到),减少select*。
否则非主键会先二级索引查询,然后回表查询(联合索引)
- 前缀索引
当字段类型为字符串(varchar, text等)时, 有时候需要索引很长的字符串,这会让索引变得很大,查询时,浪费大量的磁盘IO,影响查询效率。此时可以只将字符串的一部分前缀,建立索引,这样可以大大节约索引空间,从而提高索引效率。- 语法
# 提取column前n个字符作为前缀索引: create index idx_xxxx on table_name(column(n));
-
前缀长度
可以根据索引的选择性来决定,而选择性是指不重复的索引值(基数)和数据表的记录总数的比值,索引选择性越高则查询效率越高,唯一索引的选择性是1,这是最好的索引选择性,性能也是最好。select count(distinct email)/count(*) from 表名; select count (distinct substring(email, 1, 5)/count(*)) from 表名;
- 单列索引与联合索引
在业务场景中,如果存在多个查询条件,考虑针对于查询字段建立索引时,建议建立联合索引,而非单列索引。
联合索引创建需要考虑顺序(最左匹配法则)。