Codeforces Round #447 (Div. 2) C. Marco and GCD Sequence(构造)

题目原文:

C. Marco and GCD Sequence
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

In a dream Marco met an elderly man with a pair of black glasses. The man told him the key to immortality and then disappeared with the wind of time.

When he woke up, he only remembered that the key was a sequence of positive integers of some length n, but forgot the exact sequence. Let the elements of the sequence be a1, a2, ..., an. He remembered that he calculated gcd(ai, ai + 1, ..., aj) for every 1 ≤ i ≤ j ≤ n and put it into a set S. gcd here means the greatest common divisor.

Note that even if a number is put into the set S twice or more, it only appears once in the set.

Now Marco gives you the set S and asks you to help him figure out the initial sequence. If there are many solutions, print any of them. It is also possible that there are no sequences that produce the set S, in this case print -1.

Input

The first line contains a single integer m (1 ≤ m ≤ 1000) — the size of the set S.

The second line contains m integers s1, s2, ..., sm (1 ≤ si ≤ 106) — the elements of the set S. It's guaranteed that the elements of the set are given in strictly increasing order, that means s1 < s2 < ... < sm.

Output

If there is no solution, print a single line containing -1.

Otherwise, in the first line print a single integer n denoting the length of the sequence, n should not exceed 4000.

In the second line print n integers a1, a2, ..., an (1 ≤ ai ≤ 106) — the sequence.

We can show that if a solution exists, then there is a solution with n not exceeding 4000 and ai not exceeding 106.

If there are multiple solutions, print any of them.

Examples
Input
4
2 4 6 12
Output
3
4 6 12
Input
2
2 3
Output
-1
Note In the first example 2 = gcd(4, 6), the other elements from the set appear in the sequence, and we can show that there are no values different from 2, 4, 6 and 12 among gcd(ai, ai + 1, …, aj) for every 1 ≤ i ≤ j ≤ n.


一道构造题: 题意:Marco在梦中遇见一个老人,老人告诉了他长生不老的方法,然后Marco想来后却只记得:给你n个所有GCD的集合S,然后让你去构造原来的序列,使得所有原序列的子区间的GCD都在集合S中。如果不存在则输出-1. 思路:首先要使新的序列能构造出来,那么原序列中最小的数肯定是其他数的因子,如果不是,那么肯定就构造不出来,构造的时候只需要把最小的数插入在原序列中间即可,这样可以保证gcd出来的结果不是自己就是最小的数

#include<iostream>#include<stdio.h>//#define MOD 1000000007using namespace std;int main(){int n;cin >> n;int a[4005];for (int i = 0; i < n; ++i){cin >> a[i];}for (int i = 1; i < n; ++i){if (a[i] % a[0] != 0){printf("-1");return 0;}}printf("%d\n", 2 * n);for (int i = 0; i < n; ++i){printf("%d %d ", a[i], a[0]);}return 0;}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值