题意:
给出一个01串,每次询问区间[l,r][l,r] 每次可以将区间内一个数取出,并且答案加上这个数的值,区间内剩余的数也加上这个值,求如何安排取出顺序使得答案最大。
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define N 100011
const ll MOD = (ll)1e9 + 7;
int n, q, a[N];
ll qmod(ll base, ll n)
{
ll res = 1;
while (n)
{
if (n & 1) res = res * base % MOD;
base = base * base % MOD;
n >>= 1;
}
return res;
}
int main()
{
while (scanf("%d%d", &n, &q) != EOF)
{
a[0] = 0;
for (int i = 1; i <= n; ++i) scanf("%1d", a + i), a[i] += a[i - 1];
for (int i = 1, l, r; i <= q; ++i)
{
scanf("%d%d", &l, &r);
int x = a[r] - a[l - 1], y = (r - l + 1) - x;
if (x == 0)
{
puts("0");
continue;
}
printf("%lld\n", qmod(2, y) * (qmod(2, x) - 1 + MOD) % MOD);
}
}
return 0;
}
///********///
分割线:
另解:思路:显然我们把所有1都取完,在取0之后会得到更优的解,其实是我们取最大值会比较优。之后我们会发现如果是一个满区间的1的话,那么值就是1 + 2 + 4 。。。等于2^n - 1 ,那么推广到有0的情况,那么的话我们把0也当作1,之后加完一通操作之后的话,我们会发现他其实多算了有多少个1的情况,最后得到的答案其实就是qpow(2,r-l+1) - qpow(2,r - l + 1 - (nex[r] - nex[l-1]));
---------------------
#include <bits/stdc++.h>
using namespace std;
const int maxn = 100000 + 10;
const int MOD = 1e9 + 7;
char ch[maxn];
int nex[maxn];
long long qpow(long long a,long long b)
{
long long ans = 1;
while(b)
{
if(b&1) ans = ans * a % MOD;
a = a * a % MOD;
b = b / 2;
}
return ans ;
}
int main()
{
int n , m;
scanf("%d%d",&n,&m);
scanf("%s",ch+1);
int len = strlen(ch+1);
for(int i = 1 ; i <= len ; i++) nex[i] = nex[i-1] + (ch[i] == '1' ? 1 : 0);
while(m--)
{
int l , r;
scanf("%d%d",&l,&r);
long long ans = qpow(2,r-l+1) - qpow(2,r - l + 1 - (nex[r] - nex[l-1]));
printf("%lld\n",(ans+MOD)%MOD);
}
}