隐私保护
文章平均质量分 78
@_@呜呜
这个作者很懒,什么都没留下…
展开
-
记一次不成功的迁移学习《Do We Really Need to Access the Source Data? Source Hypothesis Transfer for Unsupervise》
Do We Really Need to Access the Source Data? Source Hypothesis Transfer forUnsupervised Domain Adaptation个人感觉这篇论文的思想还是挺好的,出发点很贴近实际,我对于迁移学习的理解很少,但据我所知,之前有关迁移学习的大多模型都是需要用到源域的数据或者特征,而这在现实中其实是不切实际的,因为源域的数据其实也包含着隐私,如果直接将其暴露那势必会遭到隐私泄露,这似乎也是该文章的一个目的。 所以该文章在只包含原创 2021-06-08 16:25:15 · 2698 阅读 · 4 评论 -
Tensorflow踩坑
Tensorflow分布式训练过程中所遇到的问题之前发过一篇文章也是关于在tensorflow上进行分布式训练的,当时只是初步的实现了这个方案,但是后来发现这个方案有问题,并且直到现在我也没有解决,不知道有没有大佬遇到过类似的问题。因为研究方向的问题,在深度学习的过程中,需要做到对训练过程中的梯度做一些变换,我们知道在tensorflowd在参数更新的时候其实是分为两步的,一步是tf.gradients(), 通过给定的损失函数以及训练参数计算得到与之对应的梯度,该op返回的是一个list,其中包含着每原创 2020-11-08 16:39:54 · 463 阅读 · 3 评论 -
复现《Deep Leakage from Gradients》的攻击实验
复现《DeepLeakagefromGradients》的攻击实验DeepLeakagefromGradients在GitHub上找到一个在pytorch实现《DeepLeakagefromGradients》论文中对CIFAR100数据集攻击的实验,加上了自己的理解class LeNet(nn.Module):def __init__(self): super(LeNet, self).__init__() act = nn.Sigmoid self.body = nn.原创 2020-06-18 19:49:52 · 4488 阅读 · 48 评论