L1-006.连续因子

转自:http://blog.csdn.net/u013615904/article/details/51423217

题目链接:https://www.patest.cn/contests/gplt/L1-006

思路分析:首先可以想到以O(sqrt(n))的复杂度求出所有因子。然后排序,这样问题就转化为求一个数组的最长连续子数组了。一开始想到的是用简单的DP,定义DP[i]为以i结尾的最长连续子数组的长度。

则动态规划转移方程为

if a[i]==a[i-1]+1 dp[i]=dp[i-1]+1;

else dp[i]=1;

这样很容易以O(n)的复杂度求出最长的子数组。但是提交上去却有两个测试样例没有过,调试了好久都没找出原因,无奈,就到网上寻找别人的AC代码,发现网上都是直接暴力枚举的思路,复杂度高的一逼,应该是O(12*sqrt(n))吧,接着自己构造了一些随机测试数据,然后用别人的AC代码跑了一份答案,再用自己的代码跑了一份答案,接着又写了一个判两个文件不一致的程序,对拍了一番,终于发现了问题所在,我这个dp算出最大子数组长度的确没错,错的是,可能这些连续的因子的乘积比该数本身还要大,举个例子,12的因子是,2,3,4,6,12,我用dp跑出来的最大长度是3,也就是2,3,4,但是2*3*4=24了,比12本身还要大,所以是错误的,正确答案是2*3。其实就是dp时少了一个条件,就是连续因子乘积要比本身小。

那知道问题出在哪里,问题就好解决了,只要限制下乘积就好了,考虑到因子并不多,最多1百来个,所以以O(n^2)的复杂度枚举出所有可能连续的情况也游刃有余。

实际此算法当然比网上别人的暴力算法要快。

代码如下:

#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<ctime>
#include<iostream>
#include<algorithm>
#include<sstream>
#include<fstream>
#include<vector>
#include<map>
#include<stack>
#include<list>
#include<set>
#include<queue>
#define LL long long
using namespace std;
const int maxn=10005;
int dp[maxn];
void debug()
{
    cout<<"debug";
}
bool judge(vector<LL>a,int l,int r,int n)//判断数组l~r的部分是否连续,并且连续因子的乘积是否能被n整除
{
    int mul=a[l];
    for(int i=l+1;i<=r;i++)//判连续
        if(a[i]!=a[i-1]+1) return 0;
        else mul*=a[i];
    if(n%mul==0) return 1;//判连续因子乘积是否能被n整除
    return 0;
}
int main()
{
   // freopen("in.txt","r",stdin);
    // freopen("user_out.txt","w",stdout);
    LL n;
    while(cin>>n)
    {
        vector<LL>a;
        a.push_back(n);
        for(LL i=2;i*i<=n;i++)//求出所有因子
        {
            if(n%i==0)
            {
                if(n==i*i) a.push_back(i);
                else a.push_back(i),a.push_back(n/i);
            }
        }
        sort(a.begin(),a.end());//排序所有因子
        int len=1,p=0;//len 保存最长因子,p保存最长因子的起始位置
        for(int i=0;i<a.size();i++)//枚举所有子串看是否连续
            for(int j=i;j<a.size();j++)
            {
                if(judge(a,i,j,n))//如连续,看是否可以更新最优解
                {
                    if(j-i+1>len) len=j-i+1,p=i;//可以更新就更新最优解
                }
            }
        cout<<len<<endl;
        int f=0;
        for(int i=0;i<len;i++)
        {
            if(f++) cout<<"*";
            cout<<i+a[p];
        }
        cout<<endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值