转自:http://blog.csdn.net/u013615904/article/details/51423217
题目链接:https://www.patest.cn/contests/gplt/L1-006
思路分析:首先可以想到以O(sqrt(n))的复杂度求出所有因子。然后排序,这样问题就转化为求一个数组的最长连续子数组了。一开始想到的是用简单的DP,定义DP[i]为以i结尾的最长连续子数组的长度。
则动态规划转移方程为
if a[i]==a[i-1]+1 dp[i]=dp[i-1]+1;
else dp[i]=1;
这样很容易以O(n)的复杂度求出最长的子数组。但是提交上去却有两个测试样例没有过,调试了好久都没找出原因,无奈,就到网上寻找别人的AC代码,发现网上都是直接暴力枚举的思路,复杂度高的一逼,应该是O(12*sqrt(n))吧,接着自己构造了一些随机测试数据,然后用别人的AC代码跑了一份答案,再用自己的代码跑了一份答案,接着又写了一个判两个文件不一致的程序,对拍了一番,终于发现了问题所在,我这个dp算出最大子数组长度的确没错,错的是,可能这些连续的因子的乘积比该数本身还要大,举个例子,12的因子是,2,3,4,6,12,我用dp跑出来的最大长度是3,也就是2,3,4,但是2*3*4=24了,比12本身还要大,所以是错误的,正确答案是2*3。其实就是dp时少了一个条件,就是连续因子乘积要比本身小。
那知道问题出在哪里,问题就好解决了,只要限制下乘积就好了,考虑到因子并不多,最多1百来个,所以以O(n^2)的复杂度枚举出所有可能连续的情况也游刃有余。
实际此算法当然比网上别人的暴力算法要快。
代码如下:
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<ctime>
#include<iostream>
#include<algorithm>
#include<sstream>
#include<fstream>
#include<vector>
#include<map>
#include<stack>
#include<list>
#include<set>
#include<queue>
#define LL long long
using namespace std;
const int maxn=10005;
int dp[maxn];
void debug()
{
cout<<"debug";
}
bool judge(vector<LL>a,int l,int r,int n)//判断数组l~r的部分是否连续,并且连续因子的乘积是否能被n整除
{
int mul=a[l];
for(int i=l+1;i<=r;i++)//判连续
if(a[i]!=a[i-1]+1) return 0;
else mul*=a[i];
if(n%mul==0) return 1;//判连续因子乘积是否能被n整除
return 0;
}
int main()
{
// freopen("in.txt","r",stdin);
// freopen("user_out.txt","w",stdout);
LL n;
while(cin>>n)
{
vector<LL>a;
a.push_back(n);
for(LL i=2;i*i<=n;i++)//求出所有因子
{
if(n%i==0)
{
if(n==i*i) a.push_back(i);
else a.push_back(i),a.push_back(n/i);
}
}
sort(a.begin(),a.end());//排序所有因子
int len=1,p=0;//len 保存最长因子,p保存最长因子的起始位置
for(int i=0;i<a.size();i++)//枚举所有子串看是否连续
for(int j=i;j<a.size();j++)
{
if(judge(a,i,j,n))//如连续,看是否可以更新最优解
{
if(j-i+1>len) len=j-i+1,p=i;//可以更新就更新最优解
}
}
cout<<len<<endl;
int f=0;
for(int i=0;i<len;i++)
{
if(f++) cout<<"*";
cout<<i+a[p];
}
cout<<endl;
}
return 0;
}