转自:https://blog.csdn.net/u013480600/article/details/32178645
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3072
题意:给你一个有向网络,网络中的每条有向边都有一个代价,表示从u向v发信息的代价.现在你要从0号点将信息发到所有的其他点去,问你最小代价是多少.其中如果u与v点可以互达(即属于同一个强连通分量),那么他们之间的通信不需要花代价. 输入保证从0号点能到达所有其他点.
分析:注意,本题输入可能有重边.不过与无重边的情况没任何区别,不同特殊处理.
首先求出图的所有连通分量,然后缩点形成DAG新图.对于同一个分量来说,分量内的信息传递都是免费的,只有分量之间(即DAG图的点之间)传递信息需要花费代价. 且由于题意保证了每个点都可达,所以DAG图每个点(除了0号点所在分量形成的点)的入度都>=1.所以我们只需要用val[i]记录第i个分量的入边中代价最小的那个值即可.
然后我们把(除0号点所在分量的val值外)所有的点所在分量的val值加起来就是我们通信花费的总代价.
代码如下:
#include<cstdio>
#include<cstring>
#include<vector>
#include<algorithm>
#include<stack>
using namespace std;
const int maxn=50000+10;
int n,m;
vector<int> G[maxn],cost[maxn];
stack<int> S;
int dfs_clock, scc_cnt;
int pre[maxn],low[maxn],sccno[maxn];
int val[maxn];//val[i]=x表第i个分量的入边中代价最小为x
void dfs(int u)
{
pre[u]=low[u]=++dfs_clock;
S.push(u);
for(int i=0;i<G[u].size();i++)
{
int v=G[u][i];
if(!pre[v])
{
dfs(v);
low[u]=min(low[u],low[v]);
}
else if(!sccno[v])
low[u]=min(low[u],pre[v]);
}
if(low[u]==pre[u])
{
scc_cnt++;
while(true)
{
int x=S.top(); S.pop();
sccno[x]=scc_cnt;
if(x==u) break;
}
}
}
void find_scc(int n)
{
dfs_clock=scc_cnt=0;
memset(pre,0,sizeof(pre));
memset(sccno,0,sizeof(sccno));
for(int i=0;i<n;i++)
if(!pre[i]) dfs(i);
}
int main()
{
while(scanf("%d%d",&n,&m)==2)
{
for(int i=0;i<n;i++) G[i].clear(),cost[i].clear();
while(m--)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
G[u].push_back(v);
cost[u].push_back(w);
}
find_scc(n);
for(int i=1;i<=scc_cnt;i++) val[i]=1e6;
for(int u=0;u<n;u++)
for(int i=0;i<G[u].size();i++)
{
int v=G[u][i];
int x=sccno[u], y=sccno[v];
if(x!=y) val[y]=min(val[y],cost[u][i]);
}
int ans=0;
for(int i=1;i<=scc_cnt;i++)if(i!=sccno[0])
ans+= val[i];
printf("%d\n",ans);
}
return 0;
}