算法作业-Ackermann函数-动态规划方法

Ackermann函数定义如下:


1,请采用备忘录方法设计一个求解该函数的递归算法。

2,请用动态规划方法设计一个非递归求解算法,该算法由两个嵌套循环组成,只能使用O(m)内的空间。

解法一:备忘录方法

解法二:动态规划方法
用两个一维数组ind[i]和val[i],使得当ind[i]等于t时,val[i] = A(i, ind[i])。初始时,令ind[0] = 0,val[0] = 1,ind[i] = -1(i > 0),val[i] = -1(i>0)。
1,当m = 0时,A(m,n) = n+1。任给一个t,当ind[0] = t时,能够求出val[0]的值,该值等于ind[0]+1;
2,当n = 0,m > 0时,A(m,n) = A(m-1,1)。能够求出当ind[i] = 0时,val[i]的值,该值等于当ind[i-1]等于1时val[i-1]的值;
3,当m > 0,n > 0时,A(m,n) = A(m-1,A(m,n-1))。当ind[i] = t,val[i] = s时,要求当ind[i]' = t + 1时val[i]'的值。val[i]' = A(i,ind[i]') = A(i-1,A(i,ind[i]' - 1)) = A(i-1, A(i,ind[i])) = A(i-1,val[i])。所以,当ind[i-1] = val[i]时,val[i]' = val[i-1]。
算法如下:
int ack(int m,int n)
{
       int i,j;
       int[] val=new int[m+1];
       int[] ind=new int[m+1];
       for(i=1;i<=m;i++)
       {
              ind[i]=-1;
              val[i]=-1;
       }
       ind[0]=0;
       val[0]=1;
       while(ind[m]<n)
       {
              val[0]++;
              ind[0]++;
              for(j=1;j<=m;j++)
              {
                     if(1==ind[j-1])
                     {
                            val[j]=val[j-1];
                            ind[j]=0;
                     }
                     if(val[j]!=ind[j-1])
                            break;
                     ind[j]++;
                     val[j]=val[j-1];
              }
       }
       return val[m];
}
Java代码如下:

package ackermann;

public class Ackermann_2 {

	public static void main(String[] args) {
		// TODO Auto-generated method stub
		System.out.println(ack(4,0));
	}

	public static int ack(int m, int n) {
		       int i,j;
		       int[] val=new int[m+1];
		       int[] ind=new int[m+1];
		       for(i=1;i<=m;i++)
		       {
		              ind[i]=-1;
		              val[i]=-1;
		       }
		       ind[0]=0;
		       val[0]=1;
		       while(ind[m]<n)
		       {
		              val[0]++;
		              ind[0]++;
		              for(j=1;j<=m;j++)
		              {
		                     if(1==ind[j-1])
		                     {
		                            val[j]=val[j-1];
		                            ind[j]=0;
		                     }
		                     if(val[j]!=ind[j-1])
		                            break;
		                     ind[j]++;
		                     val[j]=val[j-1];
		              }
		       }
		       return val[m];
	}

}
对代码进行实例测试结果如下:(与备忘录方法的测试实例相同)
ack(0,5) = 6  
ack(1,5) = 7  
ack(2,4) = 11  
ack(3,6) = 509  
ack(4,0) = 13
  • 5
    点赞
  • 53
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
Ackermann函数是一个非常复杂的数学函数,其定义如下: $$A(m,n)=\begin{cases} n+1, & \text{if } m=0 \\ A(m-1,1), & \text{if } m>0 \text{ and } n=0 \\ A(m-1,A(m,n-1)), & \text{if } m>0 \text{ and } n>0 \end{cases}$$ 其中,$m$和$n$都是非负整数。 为了设计一个自底向上的算法来计算Ackermann函数,我们可以首先计算所有小于等于给定参数的所有值的Ackermann函数,并将结果存储在一个数组中。然后,我们可以使用这个数组来计算更大的参数的Ackermann函数。 具体来说,我们可以使用一个二维数组$A[m][n]$来存储$m$和$n$的值的Ackermann函数。我们可以首先计算所有$m=0$或$n=0$的情况,即: $$A[0][n]=n+1, \qquad A[m][0]=A[m-1][1]$$ 然后,我们可以使用下面的递推公式来计算更大的$m$和$n$的值的Ackermann函数: $$A[m][n]=A[m-1][A[m][n-1]]$$ 这个公式可以通过在数组中查找已知的Ackermann函数值来计算。由于$m$和$n$的值都是非负整数,因此我们可以使用一个双重循环来计算所有可能的$m$和$n$的值的Ackermann函数。 下面是一个使用自底向上方法计算Ackermann函数的Python代码: ```python def ackermann(m, n): A = [[0] * (n+1) for i in range(m+1)] for i in range(n+1): A[0][i] = i+1 for i in range(1, m+1): A[i][0] = A[i-1][1] for j in range(1, n+1): A[i][j] = A[i-1][A[i][j-1]] return A[m][n] ``` 在这个代码中,我们首先创建一个大小为$(m+1)\times(n+1)$的二维数组$A$,并将所有$m=0$或$n=0$的情况计算出来。然后,我们使用双重循环来计算所有其他可能的$m$和$n$的值的Ackermann函数,并返回$A[m][n]$的值。 这个算法间复杂度为$O(mn)$,空间复杂度为$O(mn)$。由于Ackermann函数的增长速度非常快,因此我们只能计算非常小的$m$和$n$的值。实际上,已知的最大的Ackermann函数值为$A(4,2)=2^{65536}-3$,它的位数超过了$10^{19728}$。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值