CNN文本分类以及对比结合RNN,R-CNN

要点:把文本句子切成一样的大小,小句子做padding,大句子做截断

一维卷积:(1)应用在时间维度上(2)Embedding长度就是通道数目(3)多种层次的卷积核

CNN不能完美解决序列式问题原因就是滑动窗口的影响,而LSTM能提取更长的依赖。

双向RNN能增强效果。CNN模型并行程度高,更快

embedding模型压缩

R-CNN文本分类模型(1)双向RNN提取特征(2)CNN进一步提取(3)Max-pooling(4)全连接层

Embedding压缩:层次参数过多,无法实用,过拟合。

方法:将一位变成二维,共享参数(理解成二进制两位数位表示四位)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值