逻辑回归-线性决策边界(python3版本)

本文通过Python3介绍了逻辑回归的线性决策边界,包括数据预处理、Sigmoid函数、梯度法及预测过程。通过实例展示了模型在数据集上的表现,分析了θ参数在迭代过程中的变化趋势。
摘要由CSDN通过智能技术生成

导入相关库

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

导入数据

#load data
fpath  = r'.../ex2data1.txt'
df = pd.read_table(fpath, engine='python', header=None, sep=',')
df.rename(columns={
   0:'Exam_1', 1:'Exam_2', 2:'Admitted'}, inplace=True)

数据预处理

#数据特征缩放到[0,1]区间
df_norm = df.apply(lambda x: (x - x.min()) / (x.max() - x.min()))

数据可视化

#plot data
plt.scatter(df[df['Admitted'] == 0]['Exam_1'],df[df['Admitted'] == 0]['Exam_2'], edgecolors='k', color='y', label='Not Admitted')
plt.scatter(df[df['Admitted'] == 1]['Exam_1'],df[df['Admitted'] == 1]['Exam_2'], marker='+', color='k', label='Admitted')
plt.legend(loc='upper right')
plt.xlabel('Exam 1 Score')
plt.ylabel('Exam 2 Score')
plt.title('Figure 1:Scatter plot of training data')

这里是引用

Sigmoid Function

  • hypothesis: h θ ( x ) = g ( θ T x ) h_{\theta}(x)=g({\theta}^Tx) hθ(x)=g(θTx)

  • sigmoid function: g ( z ) = 1 1 + e − z g(z)={\frac{1}{1+e^{-z}}}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值