树-堆结构练习——合并果子之哈夫曼树
Time Limit: 1000MS Memory Limit: 65536KB
Submit Statistic
Problem Description
在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。多多决定把所有的果子合成一堆。
每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过n-1次合并之后,就只剩下一堆了。多多在合并果子时总共消耗的体力等于每次合并所消耗体力之和。
因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为1,并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。
例如有3种果子,数目依次为1,2,9。可以先将1、2堆合并,新堆数目为3,耗费体力为3。接着,将新堆与原先的第三堆合并,又得到新的堆,数目为12,耗费体力为12。所以多多总共耗费体力=3+12=15。可以证明15为最小的体力耗费值。
Input
第一行是一个整数n(1<=n<=10000),表示果子的种类数。第二行包含n个整数,用空格分隔,第i个ai(1<=ai<=20000)是第i个果子的数目。
Output
输出包括一行,这一行只包含一个整数,也就是最小的体力耗费值。输入数据保证这个值小于2^31。
Example Input
3
1 2 9
Example Output
15
Hint
#include <stdio.h>
#include <iostream>
#include <limits.h>
#include <stdlib.h>
#include <string.h>
#include <list>
#define SIZE 10010
using namespace std;
typedef struct
{
int *arr;
int len;
}heap;
void heapInit(heap &H)
{
H.arr = (int *)malloc(sizeof(int)*SIZE);
H.len = 0;
H.arr[0] = INT_MIN;
}
void heapAdjust(heap &H,int start,int end)
{
int temp = H.arr[start];
for(int i = start*2;i<=end;i=i*2)
{
if(i<end&&H.arr[i+1]<H.arr[i])
{
i++;
}
if(temp<H.arr[i])
{
break;
}
H.arr[start] = H.arr[i];
start = i;
}
H.arr[start] = temp;
}
int heapDel(heap &H)
{
int temp = H.arr[1];
H.arr[1] = H.arr[H.len--];
heapAdjust(H,1,H.len);
return temp;
}
void heapInsert(heap &H,int data)
{
H.arr[++H.len] = data;
int k = H.len;
while(data<H.arr[k/2])
{
H.arr[k] = H.arr[k/2];
k=k/2;
}
H.arr[k] = data;
}
int main()
{
heap H;
heapInit(H);
int n;
scanf("%d",&n);
for(int i = 0;i<n;i++)
{
int temp;
scanf("%d",&temp);
heapInsert(H,temp);
}
int sum = 0;
while(H.len>1)
{
int x = heapDel(H);
int y = heapDel(H);
heapInsert(H,x+y);
sum+=x+y;
}
printf("%d\n",sum);
return 0;
}