Leetcode-11. Container With Most Water

Topic Background

You are given an integer array height of length n. There are n
vertical lines drawn such that the two endpoints of the ith line are
(i, 0) and (i, height[i]). Find two lines that together with the x-axis form a container, such that the container contains the most water.
Return the maximum amount of water a container can store.Notice that you may not slant the container.

Example 1:
在这里插入图片描述
Input: height = [1,8,6,2,5,4,8,3,7]
Output: 49
Explanation: The above vertical lines are represented by array [1,8,6,2,5,4,8,3,7]. In this case, the max area of water (blue section) the container can contain
is 49.
Example 2:

Input: height = [1,1]
Output: 1

Constraints:

n == height.length 2 <= n <= 105 0 <= height[i] <= 104

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/container-with-most-water
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

Solution 1

暴力版(超时)

class Solution {
public:
    int maxArea(vector<int>& height) {
	int midheight = height[0];
	int area=0,maxarea = 0; 
	int count=0;
	for(int i=0;i<height.size();i++){
		
		midheight=height[i];
		if(midheight!=0)
			count++; 
		for(int j=i+1;j<height.size();j++){
			if(height[i]>=height[j]&&height[j]!=0)
				midheight = height[j];
            if(height[j]>midheight&&midheight!=height[i])
				midheight = height[i];
			area = midheight*(j-i);
			maxarea = max(area,maxarea);
		}
	}
	if(count==1)
		return 0;
	return maxarea;
    }
};


Solution2

双指针

class Solution {
public:
    int maxArea(vector<int>& height) {
        if(height.size()<=1)
            return -1;
        int i=0,j=height.size()-1,res = 0;
        while(i<j){
            int h = min(height[i],height[j]);
            res = max(res,h*(j-i));
            if(height[i]<height[j])
                ++i;
            else
                --j;
        }
        return res;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值