钢铁切割问题

1.纯递归

(1)C++实现:

#include<bits/stdc++.h>
using namespace std; 
static int num = 0;
int cut(int p[], int n) {
		num++;
		int q = -1;
		if(n == 0) {
			return 0;
		}
		for(int i = 0; i<n; i++ ) {
			q = max(q, p[i] + cut(p,n-i-1));
		}
		return q;
		
}

int main(){
	int n = 8;
	int p[] = {1,5,8,9,10,17,17,20,24,30};
	cout<<cut(p,n)<<endl;
	cout<<num<<endl;
	return 0;
}




int main(){
int n = 8;
int p[] = {1,5,8,9,10,17,17,20,24,30};
cout<<cut(p,n)<<endl;
cout<<num<<endl;
return 0;
}

(2)java实现:

public class 钢铁切割问题_纯递归 {
	private static int []p = {1,5,8,9,10,17,17,20,24,30};
	static int num = 0; //递归调用次数
	public static void main(String[] args) {
		// TODO Auto-generated method stub
		int n = 10;
		System.out.println(cut(p,n));
		System.out.println(num);
	}
	public static int cut(int []p, int n) {
		num ++;
		int q = -1;
		if(n == 0) {
			return 0;
		}
		for(int i = 0; i<n; i++ ) {
			q = Math.max(q, p[i] + cut(p,n-i-1));
		}
		return q;
		
	}
}


2.递归+动态规划
public class 递归_动态规划 {
	private static int []p = {1,5,8,9,10,17,17,20,24,30};
	static int num = 0; //递归调用次数
	public static void main(String[] args) {
		// TODO Auto-generated method stub
		int n = 10;
		System.out.println(cut(p,n));
		System.out.println(num);
		System.out.println(bottom_up_cut(p, n));
		
	}
	
//	自顶向下方法
	public static int cut(int []p, int n) {
		int []r = new int[n];
		for(int i = 0; i<r.length; i++) {
			r[i] = -1;
		}
		return memoized_cut(p, n, r);
	}
	
	public static int memoized_cut(int []p, int n, int []r) {
		
		if(n >= 1 && r[n-1] > 0) {
			return r[n];
		}
		int q = -1;
		if(n == 0) {
			q = 0;
		}
		else {
			num++;
			for(int i = 0; i<n; i++ ) {
				q = Math.max(q, p[i] + cut(p,n-i-1));
			}
		}
		if(n>=1) {
			r[n-1] = q;
		}
		return q;
		
	}
	
//	自底向上方法
	public static int bottom_up_cut(int []p, int n) {
		int []r = new int[n+1];
		r[0] = 0; //长度为0的收益为0
//		依次求解规模为1,2···n的子问题
		for(int i = 1; i < r.length; i++) {
			int q = -1;
			for(int j = 1 ; j <= i; j++) {
				q = Math.max(q, p[j-1] + r[i-j]);
			}
			r[i] = q;
		}
		return r[r.length-1];
	}
}


3.动态规划_重构最优解

public class 动态规划_重构最优解 {
	private static int []p = {1,5,8,9,10,17,18,20,24,30};

	public static void main(String[] args) {
		// TODO Auto-generated method stub
		int n = 7;
		System.out.println(bottom_up_cut(p, n));
	}
	
//	自底向上方法
	public static int bottom_up_cut(int []p, int n) {
		int []r = new int[n+1];
		int []s = new int[n+1];
		r[0] = 0; //长度为0的收益为0
//		依次求解规模为1,2···n的子问题
		for(int i = 1; i < r.length; i++) {
			int q = -1;
			for(int j = 1 ; j <= i; j++) {
				if(q < p[j-1] + r[i-j]) {
					q = p[j-1] + r[i-j];
					s[i] = j; //保存最优解对应的第一段切割长度j
				}
			}
			r[i] = q;
		}
//		输出一个最优解
		while(n > 0) {
			System.out.print(s[n]+" ");
			n = n - s[n];
		}
		return r[r.length-1];
	}
}


### 使用强化学习解决规划与切割问题的最佳实践 #### 1. 强化学习在规划中的应用 强化学习(Reinforcement Learning, RL)通过最大化累积奖励的方式,能够有效应对复杂环境下的动态决策问题。对于路径规划问题,可以将其建模为马尔可夫决策过程(MDP),其中状态空间表示当前的位置或配置,动作空间则对应于移动方向或其他操作[^2]。 例如,在旅行商问题(TSP)中,指针网络被设计用于生成城市间的访问顺序。为了克服传统监督学习方法依赖高质量标注数据的局限性,研究者提出了采用无模型基于策略的强化学习技术来调整网络参数θ。这种方法不仅减少了对外部标签的需求,还允许系统探索更具创造性的解决方案而非简单模仿已有算法的结果。 #### 2. 切割问题中的强化学习 针对材料科学领域内的二维或三维切割优化问题,强化学习同样展现出巨大潜力。这类问题通常涉及如何高效利用有限资源以最小化浪费并满足特定约束条件。一种常见做法是构建模拟环境,让代理逐步尝试不同切分方案直至达到全局最优解或者接近理想水平的表现为止[^3]。 具体而言,初始阶段可能会采取完全随机的选择方式——即所谓“均匀撒米”,随后逐渐建立起更加精确的概率分布用来指导后续采样过程。此过程中形成的蒙特卡罗树搜索结构有助于快速定位优质候选区域,并借助价值函数估算未来收益从而做出明智决定。 以下是伪代码展示了一个简化版的RL求解流程: ```python def rl_cutting_optimization(state_space, action_space): policy_network = initialize_policy() while not converged: state = sample_initial_state(state_space) done = False while not done: action_probabilities = policy_network.predict(state) selected_action = choose_action(action_probabilities) next_state, reward, done = environment.step(selected_action) update_policy(policy_network, state, selected_action, reward) state = next_state return optimal_solution ``` 上述代码片段展示了基本框架:初始化策略后进入循环迭代更新直到收敛;每轮内部又细分为若干步骤完成一次完整的交互周期。 #### 3. 实际案例分析 - **物流配送路线优化** 结合实际业务场景,某电商平台运用DQN(Deep Q-Networks)实现了大规模订单分配及运输线路安排自动化管理。相比人工调度模式显著降低了运营成本同时提高了客户满意度。 - **钢板下料最省面积布局计算** 钢铁制造业面临大量异形零件加工需求时需合理安排板材上各部件位置关系以便节约原材料消耗量。引入A3C(Asynchronous Advantage Actor-Critic)架构成功解决了以往单纯依靠经验法则难以兼顾效率效益双重指标难题。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值