A Generative Appearance Model for End-to-end Video Object Segmentation(待更)

论文介绍

2018年CVPR vos论文
论文地址
目的是针对现有vos方法的问题做出改进:现有性能最好的vos方法使用CNN进行fine-tune,这种方法除了昂贵之外,不能将online fine-tune整合到offline中,从而不能实现真正意义上的end-to-end训练。
作者为了解决这个问题,提出的模型可以在一次forward pass中学习target和background。给定一个新图像,模型可以得到类别的后验概率,从而给前/背景提供提示。实现真正意义上的end-to-end.

大致流程

在这里插入图片描述
第一帧精确标记的mask和feature map对Mask-propagation Module和Appearance Module初始化。

图像经过backbone生成的feature map交由Mask-propagation Module和Appearance Module进行处理,随后进行融合,在Fusion layer生成粗粒度预测(同时fusion module的结果反馈给mask-propagation module和appearance module在下一阶段使用),Fusion Module的输出结果结合初级特征在Upsampling Module进行优化,最后再通过predictor module进行精准分割。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值