统计+微积分+凸优化(数学)
Soyoger
申明:个人微信公众号:AI技术研习社,公众号ID:ai2club。本博客只是用来学习,并不从事任何商业活动,其内容是自己总结或者来自互联网搜索到的,并没有过多关注版权问题,如有侵权内容,请私信我进行删除,谢谢。本博客内容主要围绕计算机领域热点技术和工作内容,不涉及版权问题,任何人可以查看、转载。
展开
-
傅立叶变换学习(一)初步认识傅立叶变换
傅里叶变换(Fourier transform)是一种线性的积分变换。因其基本思想首先由法国学者傅里叶系统地提出,所以以其名字来命名以示纪念。哦,傅里叶变换原来就是一种变换而已,只是这种变换是从时间转换为频率的变化。这下,你就知道了,傅里叶就是一种变换,一种什么变换列?就是一种从时间到频率的变化或其相互转化。ok,咱们再来总体了解下傅里叶变换,让各位对其有个总体大概的印象,也顺便看看傅里叶转载 2017-08-16 15:35:04 · 1937 阅读 · 0 评论 -
通俗易懂的泰勒展开微积分推导过程
相信大家都会求导吧,给定一个f(x),都可以唯一确定一个导函数f '(x),导函数给出了原函数的变化情况。比如导函数为但是,倒过来就不行了,一个导函数对应原函数为,,………无穷多个。写成积分形式就是具体求导过程很多,自己看,为什么呢,因为在求导的过程中,我们虽然得到的函数今后的变化情况,但损失了一部分信息,就是原函数的初始值。概括一下,原函数的信息=导函数的信息+初始值信息原创 2017-08-17 09:40:24 · 50404 阅读 · 5 评论 -
通俗易懂的傅立叶级数理解
前面说到过泰勒展开式,这里我们在复习一下。我们知道泰勒展开式就是把函数分解成1,x,x^2,x^3....幂级数(指数)的和。你知道为什么要展开成幂级数的和吗?请看这里:因为我们把y展开成泰勒级数 y = 1+x+x^2+x^3+x^4+…的时候我们可以无限细分得到函数在每个点的【【变化】】呀!这和你把3234.352拆成3000+200+30+4+0.3+0.05+0.002一样原创 2017-08-17 10:54:57 · 8907 阅读 · 3 评论 -
拉格朗日乘子法
前面在学习SVM支持向量机的时候,遇到求解问题是一个二次规划问题,解决办法用拉格朗日乘子法,这里复习一下拉格朗日乘子法。原创 2017-08-25 16:23:45 · 1991 阅读 · 0 评论 -
牛顿-莱布尼茨公式
牛顿-莱布尼兹公式(Newton-Leibniz formula),通常也被称为微积分基本定理,揭示了定积分与被积函数的原函数或者不定积分之间的联系。牛顿-莱布尼茨公式的内容是一个连续函数在区间 [ a,b ] 上的定积分等于它的任意一个原函数在区间[ a,b ]上的增量。牛顿在1666年写的《流数简论》中利用运动学描述了这一公式,1677年,莱布尼茨在一篇手稿中正式提出了这一公式。因为二者最原创 2017-09-14 13:23:23 · 27155 阅读 · 0 评论 -
梯度下降---偏导数及其几何意义
在一元函数中,我们已经知道导数就是函数的变化 率。对于二元函数我们同样要研究它的“变化率”。然而,由于自变量多了一个,情况就要复杂的多。 一、几何意义 在xOy平面内,当动点由P(x0,y0)沿不同方向变化时,函数f(x,y)的变化快慢一般说来是不同的,因此就需要研究f(x,y)在(x0,y0)点处沿不同方向的变化率。 偏导数表示固定面上一点的切线斜率 假设ƒ是一原创 2017-11-22 14:44:45 · 24985 阅读 · 1 评论