- 博客(201)
- 资源 (6)
- 收藏
- 关注
原创 文献汇总|AI生成图像模型溯源相关工作汇总(2019年至今)
本篇博客总结 2019 年至今 通用AIGI(AI-Generated Image)模型溯源相关研究工作。
2025-04-22 17:24:01
1235
原创 文献汇总|AI生成图像检测相关工作汇总(2018年至今)
本篇博客总结 2018年至今 通用AIGI(AI-Generated Image)检测相关研究工作。
2024-11-28 11:13:49
8935
3
原创 一点思考|AIGI检测与溯源近期研究进展
在数据集构建方面,呈现这样一种趋势:数据集规模更大(高达百万级甚至 千万级)、涵盖的生成模型种类更多(GAN、扩散模型和自回归模型等)、图像类型更加丰富(人脸、物体和场景图像)、图像性质更加多元(真实图像、AI编辑图像和AI生成图像)。鲁棒性包括理想状态下的图像后处理操作(JPEG压缩、高斯噪声、高斯模糊、尺寸变换和裁剪等)和真实场景下的图像后处理操作(社交网络传输、重数字化等)。针对真实图像或AI生成图像,为提高检测结果的可解释性,主要使用视觉语言模型,在给出检测结果的同时,一并给出解释文本。
2025-11-04 03:47:22
668
原创 碎片笔记|Stable Diffusion 原理解析:潜空间扩散与去噪机制
本文介绍了Stable Diffusion图像生成的原理。扩散模型包含前向扩散(加噪)和反向扩散(去噪)两个阶段,关键组件是噪声调度器(控制噪声强度)和潜空间操作(提高计算效率)。核心在于U-Net架构的噪声预测器,通过交叉注意力机制融合文本提示(CLIP编码)与潜空间特征,并使用classifier-free guidance调节文本影响程度。最终通过DDIM等采样策略逐步去噪,将潜空间表示经VAE解码器还原为像素图像。整个过程实现了从文本到高质量图像的语义控制生成。
2025-10-18 01:56:35
976
原创 碎片笔记|生成模型原理解读:AutoEncoder、GAN 与扩散模型图像生成机制
本文介绍了三种主流的图像生成模型架构:AutoEncoder(自编码器)、GAN(生成对抗网络)和Diffusion Model(扩散模型)。AutoEncoder通过编码-解码结构实现图像重建,其变体VAE可直接生成图像。GAN利用生成器与判别器的对抗训练生成逼真图像。Diffusion Model通过逐步去噪生成图像,其衍生模型LDM(潜空间扩散模型)在潜在空间进行扩散,显著降低了计算成本。这些模型各具特点,为图像生成任务提供了多样化的解决方案。
2025-10-01 07:10:03
1174
原创 论文研读|基于图像修复的AI生成图像检测(CVPR 2025)
这个方法一个突出的特点就是,对于每个待检测的target model,都要训练一个替代模型模拟生成图像的分布,然后才能完成检测,可以看作是逐个击破,因此,相较于那些用来同时检测多种模型生成图像的基于分类器的方法而言,这种verification更加具有针对性,或许这就是这个方法可以取得较好效果的原因。1)是由于自己当时没有想到将场景设定为verification,而是采用基于分类器的检测场景设置,对不同的生成模型共用一个判定阈值,这就导致了不同生成模型的分布差异带来的预测结果错乱,最终效果可想而知。
2025-08-01 00:22:06
1243
原创 碎片笔记|图像质量评估(Image Quality Assessment, IQA)方法汇总及代码实现
本文介绍了常用的图像质量评估方法,包括全参考(FR)和无参考(NR)两类。全参考方法通过比较测试图像与参考图像进行质量评估,主要包括PSNR(峰值信噪比)、SSIM(结构相似度)、MS-SSIM(多尺度SSIM)、LPIPS(学习感知图像块相似度)、DISTS(深度图像结构纹理相似度)、CLIPScore(基于CLIP的语义相似度)以及FID/KID(分布距离度量)。无参考方法直接评估测试图像质量,包括NIQE、BRISQUE和Inception Score(IS)。
2025-07-21 23:54:31
2107
原创 碎片笔记|PromptStealer复现要点(附Docker简单实用教程)
本文记录了复现PromptStealer论文的环境配置过程。为避免网络问题,使用huggingface镜像预先下载了论文中使用的lexica_dataset数据集。
2025-05-18 21:14:14
709
原创 碎片笔记|AI生成图像溯源方法源码复现经验(持续更新中……)
本篇博客分享了多种图像溯源方法的复现经验,涵盖Close-set Attribution、Open-set Attribution和Single-Model Attribution三大类。具体方法包括RepMix、De-Fake、DNA-Net、POSE、OCC-CLIP和LatentTracer。文章详细介绍了每种方法的环境配置、代码适配以及数据集处理中的常见问题和解决方案。
2025-05-14 23:26:47
1564
7
原创 大模型微调|使用 LLaMA-Factory 微调 Llama3-8B-Chinese-Chat 完成知识问答任务
本篇博客记录如何使用 LLaMA-Factory 微调 Llama3-8B-Chinese-Chat 完成知识问答任务,并介绍相应报错的解决方法。
2025-03-12 23:16:54
2136
原创 大模型微调|使用LoRA微调Qwen2.5-7B-Instruct完成文本分类任务
本篇博客记录如何使用LoRA完成Qwen2.5-7B-Instruct微调及报错相应解决方法。
2025-01-15 11:41:12
6876
16
原创 问题清除指南|关于num_classes与 BCELoss、BCEWithLogitsLoss 和 CrossEntropyLoss 的关系
本篇博客介绍 num_classes 的值与 不同损失函数 的关系。
2025-01-03 15:28:39
1065
原创 文献汇总|Facial Deepfake检测相关工作汇总
本篇博客总结历年 AIGFI(AI-Generated Face Image)检测相关研究工作。
2024-12-28 11:50:37
1419
原创 文献研读|基于像素&语义层面图像重建的AI生成图像检测
本篇文章主要对基于重建的AI生成图像检测的四篇相关工作进行介绍,分别为基于像素层面重建的检测方法 DIRE 和 Aeroblade,以及基于语义层面重建的检测方法 SimGIR 和 Zerofake;并对相应方法进行比较。
2024-12-18 22:55:22
1673
原创 问题清除指南|libpng库相关警告信息及其解决方案汇总
本篇博客对libpng库进行介绍,并记录使用libpng库时遇到的一些警告信息及相应的解决方案。
2024-12-16 21:38:51
2781
原创 问题清除指南|AEROBLADE论文复现相关要点总结
本篇博客总结本人在复现 CVPR 2024 论文 AEROBLADE 过程中遇到的一些问题及解决方案。注:仅仅使用了论文github源码中的Quickstart部分。
2024-12-10 22:00:19
1142
3
原创 参会记录|2024 中国计算机大会(CNCC 2024)
2024年10月24-26日,有幸在横店参加了2024年度的中国计算机大会(CNCC),本篇博客总结本人在会议期间收听的主要报告内容及收获。
2024-10-28 19:52:25
2316
原创 问题清除指南|alimama-creative/FLUX-Controlnet-Inpainting 运行注意事项
近日验证想法需要用到inpainting技术,选择了。
2024-10-18 10:38:32
1781
2
原创 问题清除指南|成功解决pip&matplotlib因为ConnectTimeoutError更新失败问题
成功解决由于 ConnectTimeoutError 导致的 python 库更新失败问题
2024-07-18 07:03:02
439
原创 问题清除指南|Dell OptiPlex 7070 升级 win11 开启 TPM 2.0 教程
问题清除指南|Dell OptiPlex 7070 升级 win11 开启 TPM 2.0 教程
2024-07-11 18:01:48
2648
1
AI大模型通用能力与安全测评的现状和发展趋势
2025-02-21
AIGC检测研究脉络及发展现状介绍
2024-07-06
提示工程 & 自主生成提示 - 调研报告
2024-05-18
「分布式训练」+ DDP单机多卡并行指南
2023-07-20
自然语言生成主客观评价指标原理详解(附代码实现)
2023-07-20
Bert详解.pptx
2023-06-15
Transformer详解.pptx
2023-06-15
CNN实现MNIST数据集分类
2020-10-28
Automated Latent Fingerprint Recognition
2020-10-28
Finishing Flows Quickly with Preemptive Scheduling
2020-10-28
Vec2Face Unveil Human Faces from their Blackbox Features inFace Recognition
2020-10-28
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅