博弈论 Bash Game| Nim Game | Wythoff Game | Fibonacci Game

Bash Game:

 

 

Problem Description

当日遇到月,于是有了明。当我遇到了你,便成了侣。
那天,日月相会,我见到了你。而且,大地失去了光辉,你我是否成侣?这注定是个凄美的故事。(以上是废话)
小t和所有世俗的人们一样,期待那百年难遇的日食。驻足街头看天,看日月渐渐走近,小t的脖子那个酸呀(他坚持这个姿势已经有半个多小时啦)。他低下仰起的头,环顾四周。忽然发现身边竟站着位漂亮的mm。天渐渐暗下,这mm在这街头竟然如此耀眼,她是天使吗?站着小t身边的天使。
小t对mm惊呼:“缘分呐~~”。mm却毫不含糊:“是啊,500年一遇哦!”(此后省略5000字….)
小t赶紧向mm要联系方式,可mm说:“我和你玩个游戏吧,赢了,我就把我的手机号告诉你。”小t,心想天下哪有题目能难倒我呢,便满口答应下来。mm开始说游戏规则:“我有一堆硬币,一共7枚,从这个硬币堆里取硬币,一次最少取2枚,最多4枚,如果剩下少于2枚就要一次取完。我和你轮流取,直到堆里的硬币取完,最后一次取硬币的算输。我玩过这个游戏好多次了,就让让你,让你先取吧~”
小t掐指一算,不对呀,这是不可能的任务么。小t露出得意的笑:“还是mm优先啦,呵呵~”mm霎时愣住了,想是对小t的反应出乎意料吧。
她却也不生气:“好小子,挺聪明呢,要不这样吧,你把我的邮箱给我,我给你发个文本,每行有三个数字n,p,q,表示一堆硬币一共有n枚,从这个硬币堆里取硬币,一次最少取p枚,最多q枚,如果剩下少于p枚就要一次取完。两人轮流取,直到堆里的硬币取完,最后一次取硬币的算输。对于每一行的三个数字,给出先取的人是否有必胜策略,如果有回答WIN,否则回答LOST。你把对应的答案发给我,如果你能在今天晚上8点以前发给我正确答案,或许我们明天下午可以再见。”
小t二话没说,将自己的邮箱给了mm。当他兴冲冲得赶回家,上网看邮箱,哇!mm的邮件已经到了。他发现文本长达100000行,每行的三个数字都很大,但是都是不超过65536的整数。小t看表已经下午6点了,要想手工算出所有结果,看来是不可能了。你能帮帮他,让他再见到那个mm吗? 

Input

不超过100000行,每行三个正整数n,p,q。 

Output

对应每行输入,按前面介绍的游戏规则,判断先取者是否有必胜策略。输出WIN或者LOST。 

Sample Input

 

7 2 4 6 2 4 

Sample Output

 

LOST WIN

 

 

#include<iostream>
using namespace std;
int main()
{
    int N,p,q;
    while( scanf("%d %d %d",&N,&p,&q)!=EOF )
    {
        if( N%(p+q)<=p && N%(p+q)>=1 )//无论什么情况 p+q都是人为可控的数字,其他数字是人为不可控,所以就变
        {                             //成在[0,s=N-(p+q)*k]中选数字,其中s在 1到p+q之间
            printf("LOST\n");
        }
        else
        {
            printf("WIN\n");
        }
    }
    return 0;
}

 

Wythoff Game:

 

 

Problem Description

有两堆石子,数量任意,可以不同。游戏开始由两个人轮流取石子。游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子;二是可以在两堆中同时取走相同数量的石子。最后把石子全部取完者为胜者。现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者。 

Input

输入包含若干行,表示若干种石子的初始情况,其中每一行包含两个非负整数a和b,表示两堆石子的数目,a和b都不大于1,000,000,000。 

Output

输出对应也有若干行,每行包含一个数字1或0,如果最后你是胜者,则为1,反之,则为0。 

Sample Input

 

2 1 8 4 4 7 

Sample Output

 

0 1 0

 

#include<iostream>
#include<cmath>
using namespace std;
int main()
{
    int n,m;
    while( (scanf("%d %d",&n,&m))!=EOF )
    {
        if(n>m) swap(n,m);
        int r=int( (m-n)*((sqrt(5)+1)/2.0) );
        if(r==n)
        {
            printf("0\n");
        }
        else
        {
            printf("1\n");
        }
    }
    return 0;
}

 

Nim Game:

 

 
 
#include <cstdio> #include <cmath> #include <iostream> using namespace std; int main() { int n,ans,temp; while(cin>>n) { temp=0; for(int i=0;i<n;i++) { cin>>ans; temp^=ans; } if(temp==0) cout<<"后手必胜"<<endl; else cout<<"先手必胜"<<endl; } return 0; } 

 

Fibonacci Game:

 

Problem Description

1堆石子有n个,两人轮流取.先取者第1次可以取任意多个,但不能全部取完.以后每次取的石子数不能超过上次取子数的2倍。取完者胜.先取者负输出"Second win".先取者胜输出"First win". 

Input

输入有多组.每组第1行是2<=n<2^31. n=0退出. 

Output

先取者负输出"Second win". 先取者胜输出"First win". 
参看Sample Output. 

Sample Input

 

2 13 10000 0

 

Sample Output

 

Second win Second win First win

 

 

 
#include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<cmath> #include<vector> #include<string> #include<map> #define LL long long #define N 1000000 #define inf 1<<20 using namespace std; long long fib[58]; int main(){ fib[0]=1;fib[1]=1; for(int i=2;i<58;i++) fib[i]=fib[i-1]+fib[i-2]; //int T;cin>>T;  long long n; while(cin>>n){ if(n==0) break; bool flag=0; for(int i=0;i<57;i++) if(fib[i]==n) { flag=1; break; } if(flag==1) cout<<"Second win"<<endl; else cout<<"First win"<<endl; } return 0; } 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值