一般的数据结构和算法的教材都没有介绍树的路径,因此对大多数应聘者而言,这是一个新概念,也就很难一下子想出完整的解题思路。这时候我们可以试着从一两个具体的列子入手,找到规律。
由于路径是从根节点出发到叶节点,也就是说路径总是以根节点为起始点,因此我们首先需要遍历根节点,在树的前序、中序、后序三种遍历方式中,只有前序遍历是首先访问根节点的。
按照前序遍历的顺序遍历二叉树,在访问节点10之后,就会访问节点5,当访问节点5的时候,我们是不知道前面经过了哪些节点的,除非我们把经过的路径上的节点保存下来,每访问一个节点,我们都把这个节点也添加到路径中,当到达节点5时,路径中包含两个节点,他们的值分别是10和5,接下来遍历到节点4,我们把这个节点也添加到路径中,这时候已经到达叶节点,单路径上三个节点的值之和是19,这个和不等于输入的值22,因此不是符合的路径。
我们接着要遍历其他的节点,在遍历下一个节点之前,先要从节点4回到节点5,再去遍历节点5的右子节点7,值得注意的是,当我们回到节点5的时候,由于节点4已经不知道前往节点7的路径上了,所以我们需要把节点4从路径中删除,接下来访问节点7的时候,再把该节点添加到路径中,此时路径中的三个节点10,5,7之和刚好是22,是一条符合要求的路径。
我们最后要遍历的是节点12,这边离这个节点之前,需要先经过节点5回到节点10。同样,每次当从子节点回到父节点的时候,我们需要在路径上删除子节点。最后在从字节10到达节点12的时候,路径上的两个节点之和也是22.
分析完全面具体的例子之后,我们就找到了一些规律。当用前序遍历的方式访问到某一节点时,我们把该节点添加到路径上,并累加该节点的值。如果该节点为叶节点,并且路径中节点值的和刚好等于输入的正数,则当前路径符合要求,我们把它打印出来。如果当前节点不是叶节点,则继续访问它的子节点。当前节点访问结束后,递归函数将自动返回到父节点的值,以确保返回父节点时,路径刚好是从根节点到父节点。我们不难看出来保存路径的数据结构实际上是一个栈,因为路径要与递归调用状态一致,而递归调用的本质就是一个压栈和出栈的过程了。
package question34_find_path;
import java.util.Stack;
/**
* @Classname Solution
* @Description TODO
* @Date 2020/3/27 17:39
* @Created by mmz
*/
public class Solution {
public class TreeNode{
int value;
TreeNode left = null;
TreeNode right = null;
public TreeNode(int value) {
this.value = value;
}
}
public void findPath(TreeNode root ,int k){
if(root == null){
return;
}
Stack<Integer> stack = new Stack<>();
findPathNew(root,k,stack);
}
public void findPathNew(TreeNode root ,int k ,Stack<Integer> path){
if(root == null){
return;
}
if(root.left == null && root.right == null){
if(root.value == k ){
System.out.println("路径开始");
for(int i :path){
System.out.println(i+",");
}
System.out.println(root.value);
}
}else{
path.push(root.value);
findPathNew(root.left,k-root.value,path);
findPathNew(root.right,k-root.value,path);
path.pop();
}
}
}
二刷,复习一遍完毕。
package question34_find_path;
import sun.reflect.generics.tree.Tree;
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/**
* @Classname Main
* @Description TODO
* @Date 2020/4/12 0:18
* @Created by mmz
*/
public class Main {
public static class TreeNode{
int value;
TreeNode left = null;
TreeNode right = null;
public TreeNode(int value) {
this.value = value;
}
}
static void Core(TreeNode treeNode,int k){
if(treeNode == null){
return;
}
List<TreeNode> list = new ArrayList<>();
CoreFind(treeNode,k,list);
}
static void CoreFind(TreeNode treeNode ,int k,List<TreeNode> list){
if(treeNode == null){
return;
}
if(treeNode.right == null && treeNode.left == null){
if(treeNode.value == k){
System.out.println("路径开始");
System.out.println(treeNode.value);
int count = list.size()-1;
while(count>=0){
System.out.print(" "+list.get(count).value);
count--;
}
}
}else{
list.add(treeNode);
CoreFind(treeNode.left,k-treeNode.value,list);
CoreFind(treeNode.right,k-treeNode.value,list);
list.remove(list.size()-1);
}
}
public static void main(String[] args) {
TreeNode one = new TreeNode(10);
TreeNode two = new TreeNode(5);
TreeNode three = new TreeNode(12);
TreeNode four = new TreeNode(4);
TreeNode five = new TreeNode(7);
one.right = three;
one.left = two;
two.left = four;
two.right = five;
Core(one,22);
}
}