
机器学习
最光阴.
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
正则化(经验风险最小化与结构风险最小化)
经验风险最小化,是根据定义的cost函数,来使训练集合的cost(损失)函数的整体最小,一般常见的的损失函数有一下:当选定了损失函数以后,就可以确定经验风险函数:1/N * L(yi, f(xi)) ( i的范围是1到N的所有训练集做累加);所谓经验风险最小化就是确定模型的参数使得经验风险函数最小。但是当训练集合很小而训练集合的元素特原创 2017-08-16 11:21:47 · 4918 阅读 · 0 评论 -
python的Matplotlib库入门学习总结
Matplotlib库是python中的功能全面的画图库,其基本用法如下:基本的plot函数用法如下:import matplotlib.pyplot as pltplt.plot(x, y, format_string, **kwargs)#x轴数据,列表或者数组,可选#y轴数据,列表或者数组#format_string 控制曲线格式的字符串,可选#**kwargs ...原创 2018-04-18 13:33:25 · 5903 阅读 · 2 评论 -
python3实现K-邻近算法(机器学习实战中代码)
from numpy import *import operator#inx:待预测数据 dateSet:训练样本集 labels:训练样本的标签 k:k邻近算法的k值def classify0(inX, dateSet, labels, k): dateSetSize = dateSet.shape[0] #获得样本的个数(也就是dateset矩阵的行数) diff...原创 2018-04-13 21:24:40 · 432 阅读 · 0 评论 -
python3实现决策树(机器学习实战)
from math import logdef calcShannonEnt(dataSet):#计算给定数据集的香农熵 numEntries = len(dataSet) labelCounts = {} for featVec in dataSet: currentLabel = featVec[-1] if currentLabel...原创 2018-04-13 21:31:39 · 1731 阅读 · 0 评论