图像处理基础
文章平均质量分 94
Super_ZLW
这个作者很懒,什么都没留下…
展开
-
非线性优化
目录引入非线性最小二乘问题一阶/ 二阶梯度法一阶(最速下降法,Steepest Method)二阶(牛顿法)方法分析(优缺点)Gauss-NewtonLevenberg_MarquadtG-N 和 L-M的对比引入一个经典的SLAM模型由一个运动方程和一个观测方程构成,如下式所示:xk=f(xk−1,uk)+wkzk,j=h(yj,xk)+vk,j\pmb{x}_k=f(\pmb{x}_{k-1},\pmb{u}_k)+\pmb{w}_k\\\pmb{z}_{k,j}=h(\pmb{y}_j,\pmb{原创 2021-07-24 08:29:26 · 264 阅读 · 0 评论 -
李代数求导和扰动模型
前一篇大概介绍了李群李代数的相关性质,这里主要介绍李代数在SLAM中的作用。这里写目录标题BCH公式及其近似形式SO(3)上的李代数的求导李代数求导扰动模型(左乘)SE(3)上的李代数求导BCH公式及其近似形式李代数在SLAM中的作用主要是进行优化,优化过程就不可避免地需要涉及到求导的过程。与标量不同,在矩阵中指数的运算法则并不适用,即是说在矩阵中:ln(exp(A)exp(B))≠A+Bln(exp(A)exp(B))\ne A+Bln(exp(A)exp(B))=A+B取而代之的时BCH公原创 2021-05-08 04:27:12 · 1509 阅读 · 0 评论 -
四元数(三维旋转)
用四元数表示三维旋转1.四元数的基本知识:与复数类似,四元数也由实部和虚部组成,但四元数有三个虚部,通常表示为:q=q0+q1i+q2j+q3kq=q_{0} + q_{1}i + q_{2}j + q_{3}kq=q0+q1i+q2j+q3k或: q=[s,v]T,其中:s=q0∈R,v=[q1,q2,q3]T∈R3q=[s, v]^{T}, 其中: s=q_{0} \in R, v=[q_{1},q_{2},q_{3}]^{T} \in R^{3}q=[s,v]T,其中:s=q原创 2021-04-02 06:09:28 · 554 阅读 · 0 评论