题目链接
题目描述
Jack是个吃鸡玩家,一个偶然的机会Jack来到了神秘的P城,Jack发现P城有 N 种宝物,每种宝物有 x[i] 个。但是当Jack想把他们全部拿走时,Jack发现由于背包限制,Jack现在只能带 3 件宝物回去,且每种宝物Jack最多只能带走 1 件。那么Jack一共有多少种带走 3 种不同宝物的方法?
输入
题目有多组测试数据
每组数据第一行输入一个m,代表m种类型(3<=m<=2000)
第二行有m个数,表述
x[i](0<x[i]<=10000)
输出
对于每组数据,按题目要求输出一共有多少种方法(mod609929123)
样例输入
3
1 2 3
样例输出
6
思路:
以每一位的贡献考虑,取第i个数,容量为3的排列组合即为
(sum[i−1]∗x[i]∗(sum[n]−sum[i]))
,最后求和即可;
#include <cstdio>
#include <algorithm>
#include <map>
#include <cstring>
#include <string>
#include <cmath>
using namespace std;
typedef long long LL;
map<string, int> ma;
const LL mod = 609929123;
const int maxn = 16000;
char ch[110][110];
LL x[2010], sum[2010];
int main() {
int n;
while(scanf("%d", &n) != EOF) {
memset(sum, 0, sizeof(sum));
memset(x, 0, sizeof(x));
for(int i = 1; i <= n; i++) {
scanf("%lld", &x[i]);
sum[i] += sum[i - 1] + x[i];
}
LL res = 0;
for(int i = 2; i < n; i++) {
LL ans = sum[i - 1];
LL cnt = sum[n] - sum[i];
res = res + (x[i] * (ans % mod) * (cnt % mod)) % mod;
res %= mod;
}
printf("%lld\n", res % mod);
}
return 0;
}