Jack的宝物问题【组合数学】

题目链接
题目描述
Jack是个吃鸡玩家,一个偶然的机会Jack来到了神秘的P城,Jack发现P城有 N 种宝物,每种宝物有 x[i] 个。但是当Jack想把他们全部拿走时,Jack发现由于背包限制,Jack现在只能带 3 件宝物回去,且每种宝物Jack最多只能带走 1 件。那么Jack一共有多少种带走 3 种不同宝物的方法?

输入
题目有多组测试数据
每组数据第一行输入一个m,代表m种类型(3<=m<=2000)
第二行有m个数,表述 x[i](0<x[i]<=10000)
输出
对于每组数据,按题目要求输出一共有多少种方法(mod609929123)
样例输入
3
1 2 3
样例输出
6
思路:
以每一位的贡献考虑,取第i个数,容量为3的排列组合即为 (sum[i1]x[i](sum[n]sum[i])) ,最后求和即可;

#include <cstdio>
#include <algorithm>
#include <map>
#include <cstring>
#include <string>
#include <cmath>
using namespace std;
typedef long long LL;

map<string, int> ma;
const LL mod = 609929123;
const int maxn = 16000;
char ch[110][110];
LL x[2010], sum[2010];

int main() {
    int n;
    while(scanf("%d", &n) != EOF) {
        memset(sum, 0, sizeof(sum));
        memset(x, 0, sizeof(x));
        for(int i = 1; i <= n; i++) {
            scanf("%lld", &x[i]);
            sum[i] += sum[i - 1] + x[i];
        }
        LL res = 0;
        for(int i = 2; i < n; i++) {
                LL ans = sum[i - 1];
                LL cnt = sum[n] - sum[i];
                res = res + (x[i] * (ans % mod) * (cnt % mod)) % mod;
                res %= mod;
        }
        printf("%lld\n", res % mod);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值