HPU 1470: 中位数 【分治】

时间限制: 1 Sec 内存限制: 128 MB
题目描述
Ocean有两个升序序列A和B,现在他将A和B合并后得到新序列C,他想知道序列C的中位数。
输入
第一行输入一个整数T,代表有T组数据。每组数据第一行输入一个整数N,代表A、B序列元素个数。接下来一行依次输入N个整数,代表序列A的元素。接下来一行依次输入N个整数,代表序列B的元素。
注:1<=T<=5000,1<=N<=5000,1<=序列元素<=1e9,由于输入输出数据过多,请对输入输出进行特殊处理。
输出
对每组测试数据,输出一个结果代表新序列的中位数。
样例输入
3
2
1 2
3 4
3
1 2 3
4 5 6
5
1 2 3 4 5
2 4 6 7 8
样例输出
2
3
4
来源
CZY

分析:本题难点在于奇偶性判断,wa了好多次····
其实C++有个函数专门find第k大的数(STL中的nth_element()方法的使用 通过调用nth_element(start, start+n, end) 方法可以使第n大元素处于第n位置(从0开始,其位置是下标为 n的元素),并且比这个元素小的元素都排在这个元素之前,比这个元素大的元素都排在这个元素之后,但不能保证他们是有序的)本题会超时,连O(n)的输入都要优化····
正解是二分,因为两个序列是有序的,利用分治的思想。在二分下,两个序列的下标满足: id1+id2=2n+1. 所以一般情况下二分的时候会直接向下取整,导致你分裂出来的序列 id1+id22n+1. 其实二分时你的两个序列所面临的情况一致的,也就是向下取整的情况是同时出现的,而此时其中一个序列会通过改变R向下取整,那么另一个序列就需要通过L++来维护 id1+id2=2n+1.
*有时候判断不好L和R如何取值的时候,可以手动模拟特殊情况,或者n比较小的时候,结果慢慢就出来了;

#include <cstdio> 
#include <algorithm>
using namespace std;

inline void scan(int &num) { //输入挂 
    char in;
    bool IsN=false;
    in=getchar();
    while(in!='-'&&(in<'0'||in>'9')) in=getchar();
    if(in=='-'){ IsN=true;num=0;}
    else num=in-'0';
    while(in=getchar(),in>='0'&&in<='9'){
            num*=10,num+=in-'0';
    }
    if(IsN) num=-num;
}

int a[5010], b[5010];

int main() {
    int t, n, k;
    scan(t);
    while(t--) {
        scan(n);
        for(int i = 1; i <= n; i++) {
            scan(a[i]);
        }
        for(int i = 1; i <= n; i++) {
            scan(a[i + n]);
        }
        bool flag = false;
        int L1 = 1, R1 = n, mid1;
        int L2 = n + 1, R2 = n + n, mid2;
        int tt = 20;
        while(tt--) {
            mid1 = (L1 + R1)>>1;
            mid2 = (L2 + R2)>>1;
            if(a[mid1] > a[mid2]) {
                if((L2 + R2) & 1) { //注意这一步操作 
                    R1 = mid1;
                    L2 = mid2 + 1;
                }
                else {
                    R1 = mid1;
                    L2 = mid2;
                }
            }
            else if(a[mid1] < a[mid2]) {
                if((L1 + R1) & 1) {
                    L1 = mid1 + 1;
                    R2 = mid2;
                }
                else {
                    L1 = mid1;
                    R2 = mid2;
                }
            }
            if(a[mid1] == a[mid2]) {
                flag = true;
                printf("%d\n", a[mid1]);
                break;
            }
        }
        if(!flag) printf("%d\n", min(a[L1], a[L2]));
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值