大白话看明白Redis数据淘汰策略,渣男提裤不认人

点赞多大胆,就有多大产!开源促使进步,献给每一位技术使用者和爱好者!
干货满满,摆好姿势,点赞发车

Redis数据淘汰策略

前言

Redis作为一个内存数据库,性能十分高,主要依赖的硬件资源就是内存,据官方数据表示Redis读的速度是110000次/s,写的速度是81000次/s,我们向Redis中源源不断存储数据,内存空间有限,这时淘汰无用数据释放空间,存储新数据就变得尤为重要,Redis提供了数据淘汰策略来释放内存

内容偏向理论,需要大家发挥想象脑补画面,最好记下来,成为面试时的谈资

内存配置

Redis在生产环境中,采用配置参数maxmemory 的方式来限制内存大小。当实际存储内存超出maxmemory 参数值时,可以通过Redis内存淘汰策略,来决定如何腾出新空间继续支持读写工作

在这里插入图片描述
上图是Redis5.0.5版本的配置,默认是被注释掉关闭的,单位是字节,当设置为0时没有限制

淘汰策略

Redis4之后为我们提供了八个不同的内存置换策略。之前版本提供了6种

  • volatile-lru:从已设置过期时间的数据集(server.db[i].expires)中挑选最近最少使用的数据淘汰。没有设置过期时间的key不会被淘汰,这样就可以在增加内存空间的同时保证需要持久化的数据不会丢失
  • volatile-ttl:从已设置过期时间的数据集(server.db[i].expires)中挑选将要过期的数据淘汰。
  • volatile-random:从已设置过期时间的数据集(server.db[i].expires)中任意选择数据淘汰。
  • volatile-lfu:从已设置过期时间的数据集(server.db[i].expires)挑选使用频率最低的数据淘汰。
  • allkeys-lru:从数据集(server.db[i].dict)中挑选最近最少使用的数据淘汰
  • allkeys-lfu:从数据集(server.db[i].dict)中挑选使用频率最低的数据淘汰。
  • allkeys-random:从数据集(server.db[i].dict)中任意选择数据淘汰
  • no-enviction(驱逐):禁止驱逐数据,这也是默认策略。意思是当内存不足以容纳新入数据时,新写入操作就会报错,请求可以继续进行,线上任务也不能持续进行,采用no-enviction策略可以保证数据不被丢失。

这八种大体上可以分为4中,lru、lfu、random、ttl,其中lfu方式是新增策略,也就是根据使用率来淘汰数据

在这里插入图片描述

通过设置maxmemory-policy设置淘汰策略

Redis是怎么触发淘汰机制的呢

首先,客户端存储数据,肯定需要有内存来存储

其次,Redis检查内存使用情况,如果实际使用内存已经超出maxmemory,Redis就会根据用户配置的淘汰策略选出无用的key

最后,确认选中数据没有问题,成功执行淘汰任务

过期键删除策略

我们都知道Redis中的key是可以设置过期时间的,这里提一下怎么判定过期键

  • Redis键的过期时间都保存在过期字典中

  • 检查给定键是否存在于字典中,如果有取得键的过期时间

  • 检查当前UNIX时间戳是否大于键的过期时间,如果是的话那么该键已经过期,否则键未过期

    接下来我们就说说过期的key如何被无情抛弃的

定时删除

  • 在设置键的过期时间的同时,创建一个定时器(timer),让定时器在键的过期时间来临时,立即执行对键的删除操作;

  • 定时删除操作对于内存来说是友好的,通过使用定时器,可以保证尽快的将过期键删除,释放所占内存

  • 对于CPU来说不是友好的,如果过期键比较多的话,删除过期键这一行为可能占用相当一部分CPU时间,在内存不紧张但是CPU紧张的情况下,将CPU时间用在删除和当前任务无关的过期键上,无疑会对服务器的响应时间和吞吐量造成影响,在某些情况下有点分不清主次啦!

  • 例如:如果有大量的命令请求等待服务器处理,并且服务器当前不缺少内存,那么服务器应该优先将CPU时间用在处理客户端的请求上,而不是删除过期键上面

  • 创建一个定时器需要用到Redis服务器中的事件事件,当前时间事件的实现方式是无序链表,查找一个事件的时间复杂度为O(N),并不能高效处理大量时间事件

  • 因此要让服务器创建大量的定时器,从而实现定时策略删除,在这里是不现实的

惰性删除

  • 对CPU是友好的,程序只会在取出键时才对键进行过期检查,这可以保证删除过期键的操作只会在非做不可时进行,并且删除的目标仅限于当前处理的键,这个策略不会在删除其他无关的过期建上浪费任何CPU时间

  • 对内存是不友好的,如果一个键已经过期,而这个键仍然保留在数据库中,那么只要这个过期键不被删除,它所占的内存就不会释放

  • 在使用惰性删除策略时,如果数据库中有非常多的过期键,而这些过期建又恰好没有被访问到的话,那么它们也许永远也不会被删除(除非用户手动执行FLUSHDB或者FLUSHALL,谨慎别用,企业中一般会将这连个命令禁用甚至删除掉,劲太猛了),这种情况是不是就是我们程序中说的内存泄漏,无用的数据占用大量内存,对于Redis这种内存数据库来说肯定不是好事

  • 例如:对于一些和时间有关的数据,比如日志(log),在某个时间点之后,对它们的访问就会减少,甚至不再访问,如果这类过期数据大量的积压在数据库中,用户以为服务器已经将它们删除了,但实际还存在,而且键所占内存也没有释放,会造成很严重的后果

定期删除

  • 上边两种删除策略在单一使用时都有明显的缺陷,定时删除占用太多CU时间,降低服务器吞吐量和响应时间,惰性删除浪费太多内存,有内存泄漏危险,定期删除就是前两种策略的整合和折中方案
  • 定期删除策略每隔一段时间执行一次删除过期键操作,并通过限制删除操作执行的时长和频率来减少删除操作对CPU时间的影响
  • 通过定期删除过期键,定期删除策略有效地减少因过期键带来的内存浪费

定期删除策略的难点在于确定删除操作的时长和频率

  • 如果删除处操作执行的太频繁,或者执行的时间太长(时间长不一定好),定时删除策略不就退化成定时删除策略了嘛,以至于CPU将过多的时间耗费在删除粗过期键上
  • 如果删除处理执行的太少,或者时间太短~~~,定期删除策略又会向惰性删除那样,出现内存浪费情况
  • 因此采用定期删除策略,服务器必须根据情况,设置删除操作的执行时长和执行频率

Redis服务器实际使用的删除策略是惰性删除和定时删除两种,相互配合可以在CPU使用时间和内存空间取得平衡,这里我们先说一下概念,具体实现待我阅读源码再与大家分享

AOF、RDB和复制功能对过期键处理

RDB

生成RDB文件

执行SAVE或者BGSAVE创建新的RDB文件时,程序会对数据库中的键进行检查,已过期的键不会被保存到新创建的RDB文件中,因此数据库包含过期键不会对新的RDB文件造成影响

载入RDB文件

在启动Redis服务器时,如果服务器开启了RDB文件,那么服务器就会对RDB文件进行载入

  • 如果当前服务器是Master,程序会对文件中保存的key进行检查,未过期的键会被载入到数据库中,而过期的键则会被忽略,所以过期键对载入RDB文件的主服务器不会造成影响
  • 如果当前服务器是Slave,文件中保存的所有键,无论是否过期,都会被载入到数据库中,不过,因为主从服务器在进行数据同步时,从服务器的数据库就会被同步成和主服务器一致,所以一般来讲,过期键对载入RDB文件的从服务器也不会造成影响
  • 例如:数据库中有k1, k2, k3三个键,k2已经过期,启动服务时
    • 如果是主服务器,k1, k3会被载入,k2会被忽略
    • 如果是从服务器,k1, k2, k3都会被载入

AOF

AOF文件写入

当服务器以AOF持久化模式运行时,如果数据库中的某个key已经过期,但是他还没有被惰性删除或者定期删除,那么AOF文件不会因为这个过期键产生任何影响,当该键被惰性删除或者定期删除之后,程序会向AOF文件追加一条DEL命令,来显式记录该键已被删除

  • 试图获取过期键zhishi,会有以下三个动作:
    • 从数据库中删除zhishi
    • 追加一条DEL zhishi命令到AOF文件
    • 向执行 GET命令的客户端返回空回复
AOF重写

AOF是将执行的写命令添加到AOF文件的末尾来记录数据的变化;为了避免文件被添加得越来越大,甚至有可能用完硬盘的所有空间,因此Redis提供了Rewrite的优化策略,分别是REWRITEAOFBGREWRITEAOF,两个命令的区别也是在于是否阻塞主进程,这两个命令都不会将数据空间中的过期键给保存到AOF文件中

主从复模式下对过期键的处理

复制模式下,从服务器的过期键删除动作由主服务控制

  • 主服务器在删除一个过期键之后,会显式地向所有从服务器发送一个DEL命令,告知从服务器删除这个过期键
  • 从服务器在执行客户端发送过来的读命令时,即使碰到过期键也不会删除,而是继续向处理未过期键一样来处理过期键
  • 从服务器只有接收到主服务器发送过来的DEL命令之后,才会删除过期键
  • 通过由主服务器来控制从服务器统一地删除过期键,可以保证主从服务器数据一致性,也正是因为这个原因,当一个过期键仍然存在于主服务器时,这个过期键在从服务器中的复制品也会继续存在

本文参考

  • 《Redis设计与实现》

本文若有任何看不懂,或者有错误的地方欢迎大家评论区留言,我时时关注哦

我是不夜学长,用你勤劳的双手点个赞吧,这将是我创作更多优质文章的动力!

### Redis 的基本概念 Redis 是一种开源的内存数据结构存储系统,它既可以作为数据库使用,也可以充当缓存和消息中间件的角色[^1]。由于其高效的性能表现和丰富的功能支持,Redis 成为了许多现代应用程序的核心组件之一。 #### 特点 - **高性能**:Redis 将所有的数据都保存在内存中,因此读写速度极快。 - **持久化选项**:尽管 Redis 主要依赖于内存操作,但它也供了多种方式来实现数据的持久化,例如 RDB 和 AOF 模式。 - **多样的数据类型**:除了常见的字符串键值对之外,Redis 还支持列表、集合、哈希表等多种复杂的数据结构[^2]。 --- ### 实际应用场景 以下是 Redis同领域的一些典型应用: #### 1. 缓存层 Redis 常被用来构建分布式缓存系统,以减轻后端数据库的压力并升响应时间。通过将频繁访问的数据加载到 Redis 中,可以显著高系统的整体效率。 #### 2. 消息队列 借助 Redis 供的消息传递机制(如 Pub/Sub 或者 Streams),开发者能够方便地实现异步通信需求。特别是自 Redis 5.0 起引入的新特性——Stream 数据类型,则进一步增强了这一能力。 ```java // Java 示例代码展示如何连接至 Redis 并测试连通性 public static void main(String[] args) { // 创建 Jedis 对象代表客户端实例 Jedis jedis = new Jedis("localhost"); try { System.out.println("Connection to server sucessfully"); // 测试命令 PING 返回结果应为 'PONG' String pingResponse = jedis.ping(); System.out.println(pingResponse); } catch (Exception e) { e.printStackTrace(); } } ``` 上述片段演示了一个简单的程序流程用于验证与远程 Redis 实例之间的交互状况[^4]。 #### 3. 计数器/排行榜 利用原子性的 INCR / DECR 操作配合 Sorted Set 结构可轻松维护实时更新的各种统计信息比如网站点击量或是游戏得分排名榜等等. #### 4. Session 存储 当面对跨服务器部署环境下的 session 共享难题时,采用 Redis 来集中管理 sessions 则成为了一种可行解决方案[^3]. #### 5. 地理位置查询 Geo 功能允许用户基于地理位置执行距离计算等相关运算,在 LBS(Location Based Service) 领域有着广泛用途. --- ### 总结 综上所述,无论是从技术层面还是业务角度考虑,选用 Redis 都能带来诸多便利之处。随着互联网行业的快速发展和技术迭代升级,相信未来会有更多创新性的实践涌现出来。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

石添的编程哲学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值