主从复制
互联网三高:高并发、高性能、高可用
redis集群:为了避免单点Redis服务器故障,准备多台服务器,互相连通。将数据复制多个副本保存在不同的服务器上,连接在一起,并保证数据是同步的。即使有其中一台服务器宕机,其他服务器依然可以继续提供服务,实现Redis的高可用,同时实现数据冗余备份。
主从复制
master:写(读数据(可忽略)),slave:读(写数据(禁止)),需要解决数据同步,master的数据复制到slave中。
为什么不用多个master?如果多个master之间还需要数据同步就比较麻烦了(哨兵机制)。
一个master可以拥有多个slave,一个slave只对应一个master
master和slave是一个相对概念,slave也可以有它的slave
主从复制作用
读写分离:master写、slave读,提高服务器的读写负载能力
负载均衡:基于主从结构,配合读写分离,由slave分担master负载,并根据需求的变化,改变slave的数量,通过多个从节点分担数据读取负载,大大提高Redis服务器并发量与数据吞吐量
故障恢复:当master出现问题时,由slave提供服务(推选出一个slave作为master),实现快速的故障恢复
数据冗余:实现数据热备份,是持久化之外的一种数据冗余方式。数据冗余不一定是坏的,备份就是数据冗余。
高可用的基石:基于主从复制,构建哨兵模式与集群,实现Redis的高可用方案。
主从复制工作流程
1、建立连接阶段(即准备阶段,slave连接master)
2、数据同步阶段
3、命令传播阶段
主从复制工作流程
建立连接阶段
步骤1:设置master的地址和端口,保存master信息
步骤2:建立socket连接
步骤3:周期性发送ping命令(定时器任务),防止连接断开
步骤4:身份验证
步骤5:slave发送自己的端口信息
总结:slave保存master的地址与端口,master保存slave的端口。二者之间创建了连接的socket
命令操作
1、slave发送slaveof <masterip> <masterport>
,也可以直接在配置文件中配置
2、断开操作:slave发送 slaveof no one
。slave断开连接后,不会删除已有数据,只是不再接受master发送的数据。
数据同步阶段
步骤1:slave发送请求同步数据
步骤2:master创建RDB同步数据
步骤3:slave恢复RDB同步数据
步骤4:slave请求部分同步数据
步骤5:slave恢复部分同步数据
生成RDB过程中接收的指令全部存放在复制缓冲区中
区别:全量复制与部分复制(增量复制)
全量复制:slave发同步指令那一刻的所有数据
部分复制:进行RDB过程中对应的所有数据
最终状态:
slave: 具有master端全部数据,包含RDB过程接收的数据
master: 保存slave当前数据同步的位置
总体: 之间完成了数据克隆
数据同步阶段master说明
1、如果master数据量巨大,数据同步阶段应避开流量高峰期,避免造成master阻塞,影响业务正常执行
2、复制缓冲区大小设定不合理,会导致数据溢出。如进行全量复制周期太长,进行部分复制时发现数据已经存在丢失的情况,必须进行第二次全量复制,致使slave陷入死循环状态。
# 默认为1M
repl-backlog-size 1mb
3、master单机内存占用主机内存的比例不应过大,建议使用**50%-70%**的内存,留下30%-50%的内存用于执行bgsave命令和创建复制缓冲区
数据同步阶段slave说明
1、为避免slave进行全量复制、部分复制时服务器响应阻塞或数据不同步,建议关闭此期间的对外服务(指的是写操作)
slave-serve-stale-data yes|no
2、数据同步阶段,master发送给slave信息可以理解master是slave的一个客户端,主动向slave发送命令
3、多个slave同时对master请求数据同步,master发送的RDB文件增多,会对带宽造成巨大冲击,如果master带宽不足,因此数据同步需要根据业务需求,适量 错峰
4、slave过多时,建议调整拓扑结构,由一主多从结构变为树状结构,中间的节点既是master,也是slave。 注意使用树状结构时,由于层级深度,导致深度越高的slave与最顶层master间数据同步延迟较大,数据一致性变差,应谨慎选。对同步要求高的在第二层,同步要求不高的在第三层。
命令传播阶段
- 当master数据库状态被修改后,导致主从服务器数据库状态不一致,此时需要让主从数据同步到一致的状态,同步的动作称为命令传播
- master将接收到的数据变更命令发送给slave,slave接收命令后执行命令
命令传播阶段的部分复制
命令传播阶段出现了断网现象
- 网络闪断闪连 ==> 忽略
- 短时间网络中断 ==> 进行部分复制
- 长时间网络中断 ==> 进行全量复制
部分复制的三个核心要素
- 服务器的运行 id(run id)
- 主服务器的复制积压缓冲区
- 主从服务器的复制偏移量
服务器运行ID(runid)
- 概念:服务器运行ID是每一台服务器每次运行的身份识别码,一台服务器多次运行可以生成多个运行id
- 组成:运行id由40位字符组成,是一个随机的十六进制字符
- 例如fdc9ff13b9bbaab28db42b3d50f852bb5e3fcdce
- 作用:运行id被用于在服务器间进行传输,识别身份。如果想两次操作均对同一台服务器进行,必须每次操作携带对应的运行id,用于对方识别
- 实现方式:运行id在每台服务器启动时自动生成的,master在首次连接slave时,会将自己的运行ID发送给slave,slave保存此ID,通过info Server命令,可以查看节点的runid
复制缓冲区
- 概念:复制缓冲区,又名复制积压缓冲区,是一个先进先出(FIFO)的队列,用于存储服务器执行过的命令,每次传播命令,master都会将传播的命令记录下来,并存储在复制缓冲区。
- 复制缓冲区默认数据存储空间大小是1M,由于存储空间大小是固定的,当入队元素的数量大于队列长度时,最先入队的元素会被弹出,而新元素会被放入队列
- 由来:每台服务器启动时,如果开启有AOF或被连接成为master节点,即创建复制缓冲区
- 作用:用于保存master收到的所有指令(仅影响数据变更的指令,例如set,select)
- 数据来源:当master接收到主客户端的指令时,除了将指令执行,会将该指令存储到缓冲区中
- 组成:偏移量(区分不同的slave数据读取到哪了) 和 字节值
- 工作原理
- 通过offset区分不同的slave当前数据传播的差异
master记录已发送的信息对应的offset
slave记录已接收的信息对应的offset
主从服务器复制偏移量(offset)
- 概念:一个数字,描述复制缓冲区中的指令字节位置
- 分类:
- master复制偏移量:记录发送给所有slave的指令字节对应的位置(多个)
- slave复制偏移量:记录slave接收master发送过来的指令字节对应的位置(一个)
- 数据来源: master端:发送一次记录一次 slave端:接收一次记录一次
- 作用:同步信息,比对master与slave的差异,当slave断线后,恢复数据使用
数据同步+命令传播阶段工作流程
第七步:
- runid不匹配,表示不是一台机器,需要从新进行全量复制
- offset不匹配,表示offset不在缓冲区中,缓冲区丢失了部分命令,也需要从新进行全量复制
心跳机制
- 进入命令传播阶段候,master与slave间需要进行信息交换,使用心跳机制进行维护,实现双方连接保持在线
- master心跳:
- 指令:PING
- 周期:由repl-ping-slave-period决定,默认10秒
- 作用:判断slave是否在线
- 查询:INFO replication 获取slave最后一次连接时间间隔,lag项维持在0或1视为正常
- slave心跳任务
- 指令:
REPLCONF ACK {offset}
- 周期:1秒
- 作用1:汇报slave自己的复制偏移量,获取最新的数据变更指令
- 作用2:判断master是否在线
- 指令:
心跳阶段注意事项
- 当slave多数掉线,或延迟过高时,master为保障数据稳定性,将拒绝所有信息同步操作
- slave数量少于2个,或者所有slave的延迟都大于等于10秒时,强制关闭master写功能,停止数据同步
min-slaves-to-write 2 min-slaves-max-lag 8
- slave数量由slave发送REPLCONF ACK命令做确认
- slave延迟由slave发送REPLCONF ACK命令做确认
主从复制工作流程(完整)
master也会周期性地pingslave,判断slave是否在线
主从复制常见问题
主从复制常见问题
频繁的全量复制(1)
问题现象:伴随着系统的运行,master的数据量会越来越大,一旦master重启,runid将发生变化,会导致全部slave的全量复制操作
redis内部优化方案:
1、master内部创建master_replid变量,使用runid相同的策略生成,长度41位,并发送给所有slave
2、在master关闭时执行命令 shutdown save,进行RDB持久化,将runid与offset保存到RDB文件中
- repl-id repl-offset
- 通过redis-check-rdb命令可以查看该信息
3、master重启后加载RDB文件,恢复数据。重启后,将RDB文件中保存的repl-id与repl-offset加载到内存中 - master_repl_id = repl master_repl_offset = repl-offset
- 通过info命令可以查看该信息
作用: 本机保存上次runid,重启后恢复该值,使所有slave认为还是之前的master
频繁的全量复制(2)
问题现象:网络环境不佳,出现网络中断,slave不提供服务
问题原因:复制缓冲区过小,断网后slave的offset越界,触发全量复制
最终结果:slave反复进行全量复制
解决方案:修改复制缓冲区大小
repl-backlog-size
建议设置如下:
1、测算从master到slave的重连平均时长second
2、获取master平均每秒产生写命令数据总量write_size_per_second
3、最优复制缓冲区空间 = 2 * second * write_size_per_second
频繁的网络中断
频繁的网络中断(1)
问题现象:master的CPU占用过高 或 slave频繁断开连接
问题原因:
1、slave每1秒发送REPLCONF ACK命令到master
2、当slave接到了慢查询时(keys * ,hgetall等),会大量占用CPU性能
3、master每1秒调用复制定时函数replicationCron(),比对slave发现长时间没有进行响应
最终结果:master各种资源(输出缓冲区、带宽、连接等)被严重占用
解决方案:通过设置合理的超时时间,确认是否释放slave
# 该参数定义了超时时间的阈值(默认60秒),超过该值,释放slave
repl-timeout
频繁的网络中断(2)
问题现象:slave与master连接断开
问题原因:
1、master发送ping指令频度较低
2、master设定超时时间较短
3、ping指令在网络中存在丢包,就造成了slave与master连接断开
解决方案:提高ping指令发送的频度
# 超时时间repl-time的时间至少是ping指令频度的5到10倍,否则slave很容易判定超时
epl-ping-slave-period
数据不一致
问题现象:多个slave获取相同数据不同步
问题原因:网络信息不同步,数据发送有延迟
解决方案:
1、优化主从间的网络环境,通常放置在同一个机房部署,如使用阿里云等云服务器时要注意此现象
2、监控主从节点延迟(通过offset)判断,如果slave延迟过大,暂时屏蔽程序对该slave的数据访问
# 开启后仅响应info、slaveof等少数命令(慎用,除非对数据一致性要求很高)
slave-serve-stale-data yes|no
哨兵模式
哨兵简介
解决master宕机
哨兵模式
哨兵(sentinel) 是一个分布式系统,用于对主从结构中的每台服务器进行监控,当出现故障时通过投票机制选择新的master并将所有slave连接到新的master。(监控和选择)
哨兵的作用
1、监控:不断的检查master和slave是否正常运行。 master存活检测、master与slave运行情况检测
2、通知(提醒):当被监控的服务器出现问题时,向其他(哨兵间,客户端)发送通知。
3、自动故障转移:断开master与slave连接,选取一个slave作为master,将其他slave连接到新的master,并告知客户端新的服务器地址
注意:
- 哨兵也是一台redis服务器,只是不提供数据服务
- 通常哨兵配置数量为单数(最少为3个)
哨兵搭建
- 配置一拖二的主从结构
- 配置三个哨兵(配置相同,端口不同)
参看sentinel.conf
- 启动哨兵:
redis-sentinel sentinel-端口号.conf
配置文件
# 连接服务器口令 例如:sentinel auth-pass mymaster itcast
sentinel auth-pass <服务器名称> <password>
# 设置哨兵监听的主服务器信息,最后的参数决定了最终参与选举的服务器数量(-1)
# sentinel monitor mymaster 192.168.194.131 6381 1
sentinel down-after-milliseconds <自定义服务名称> <主机地址> <端口> <主从服务器总量>
# 指定哨兵在监控Redis服务时,判定服务器挂掉的时间周期,默认30秒(30000),也是主从切换的启动条件之一
# sentinel down-after-milliseconds mymaster 3000
sentinel down-after-milliseconds <服务名称> <毫秒数(整数)>
# 指定同时进行主从的slave数量,数值越大,要求网络资源越高,要求约小,同步时间约长
# sentinel parallel-syncs mymaster 1
sentinel parallel-syncs<服务名称> <服务器数(整数)>
# 指定出现故障后,故障切换的最大超时时间,超过该值,认定切换失败,默认3分钟
# sentinel failover-timeout mymaster 9000
sentinel failover-timeout <服务名称> <毫秒数(整数)>
# 服务器无法正常联通时,设定的执行脚本,通常调试使用。
sentinel notification-script <服务名称> <脚本路径>
哨兵原理
哨兵的主要任务就是主从切换
- 哨兵在进行主从切换过程中经历三个阶段
- 监控
- 通知
- 故障转移
监控阶段
监控阶段:同步信息
- 用于同步各个节点的状态信息
- 获取各个sentinel的状态(是否在线,ping)
- 获取master的状态(发info)
- master属性:runid 和 role:master
- 根据master端的信息能获取slave的ip和port
- 获取所有slave的状态(根据master中的slave信息,发info)
- slave属性:runid、role:slave、master_host、master_port、offset ……
- 总结:sentinel会向master要状态,根据master信息向slave要状态,也会向其它sentinel要状态,sentinel之间会组件频道用于发布和订阅信息,进行信息的同步。
通知阶段
通知阶段:保持联通
这个阶段的状态都是正常的
故障转移阶段
判断master是否宕机
1、sentinel给master发hello,master未响应,于是sentinel就不断给master发hello,发一定阶段后就认定master宕机,将其标记为 flags:SRI_S_DOWN
2、sentinel1会在内网中发消息说master宕机
3、同网的sentinel接收到消息也会给master发消息来确定master是否宕机,同网的sentinel也会将接收到的信息发送到内网
4、当有 一半 sentienl认为master宕机了就会将它的状态改为 flags:SRI_O_DOWN
注意:SRI_S_DOWN称为主观下线,SRU_O_DOWN称为客观下线
选举一个sentinel来处理宕机的master
1、每个sentinel都要往内网发消息,要处理哪个机器、自己的精选次数以及自己的runid
2、投票机制:每个sentinel即使参选者也是投票者,假入sentinel1和sentinel4同时将消息发到内网中,那么谁的消息先将信息发到sentinel2,sentinel2就会将票投给谁
3、如果一个sentinel得到半数以上的票,就会当选,如果没达到这样的效果就会再来一轮投票,并且竞选次数加1
竞选出来的master来挑选备选master
- 从服务器列表中挑选备选master
- 在线的
- 响应速度快的
- 排除与原master断开时间久的
优先原则
- 优先级,优先级都一样看 偏移量offset
- offset,看哪个同步性更强,偏移量一样就看runnid
- runid,那个小选哪个
- 发送指令( sentinel )
- 向新的master发送slaveof no one,断开与宕机的master连接
- 向其他slave发送slaveof 新masterIP端口
总结
1、发现问题
2、竞选负责人
3、优选新master
4、新master上任,其他slave切换master,原master作为slave故障回复后连接
集群
集群简介
集群就是使用网络将若干台计算机联通起来,并提供统一的管理方式,使其对外呈现单机的服务效果
集群作用:
1、分散单台服务器的访问压力,实现负载均衡
2、分散单台服务器的存储压力,实现可扩展性
3、降低单台服务器宕机带来的业务灾难
集群结构设计
数据存储设计
key应该存储在哪
1、通过算法设计,计算出key应该保存的位置
2、将所有的存储空间计划切割成16384份,每台主机保存一部分。每份代表的是一个存储空间,不是一个key的保存空间
3、将key按照计算出的结果放到对应的存储空间,存储key的地方称之为 槽
新加机器了怎么办
每个机器都有自己的槽,当新加及其就分一部分槽给新加的机器,如果去机器,就把槽返回给现有的机器
集群内部通讯设计
1、各个数据库相互通信,保存各个库中槽的编号数据
2、一次命中,直接返回
3、一次未命中,告知具体位置,保证最多两次命中。
集群结构搭建
企业级解决方案
缓存预热
问题:服务器启动后迅速宕机
问题排查:
1、请求数量较高
2、主从之间数据吞吐量较大,数据同步操作频度较高
前置准备工作:
1、日常例行统计数据访问记录,统计访问频度较高的热点数据
2、利用LRU数据删除策略,构建数据留存队列。例如:storm与kafka配合
准备工作:
1、将统计结果中的数据分类,根据级别,redis优先加载级别较高的热点数据
2、利用分布式多服务器同时进行数据读取,提速数据加载过程
3、热点数据主从同时预热
实施:
1、使用脚本程序固定触发数据预热过程
2、如果条件允许,使用了CDN(内容分发网络),效果会更好
总结:缓存预热就是系统启动前,提前将相关的缓存数据直接加载到缓存系统。避免在用户请求的时候,先查询数据库,然后再将数据缓存的问题!用户直接查询事先被预热的缓存数据!
缓存雪崩
数据库服务器崩溃
1.系统平稳运行过程中,忽然数据库连接量激增
2.应用服务器无法及时处理请求
3.大量408,500错误页面出现
4.客户反复刷新页面获取数据
5.数据库崩溃
6.应用服务器崩溃
7.重启应用服务器无效
8.Redis服务器崩溃
9.Redis集群崩溃
10.重启数据库后再次被瞬间流量放倒
问题排查:短时间范围内,大量key集中过期
1.在一个 较短
的时间内,缓存中 较多
的key 集中过期
2.此周期内请求访问过期的数据,redis未命中,redis向数据库获取数据
3.数据库同时接收到大量的请求无法及时处理
4.Redis大量请求被积压,开始出现超时现象
5.数据库流量激增,数据库崩溃
6.重启后仍然面对缓存中无数据可用
7.Redis服务器资源被严重占用,Redis服务器崩溃
8.Redis集群呈现崩塌,集群瓦解
9.应用服务器无法及时得到数据响应请求,来自客户端的请求数量越来越多,应用服务器崩溃
10.应用服务器,redis,数据库全部重启,效果不理想
解决方案 - 道
1.更多的页面静态化处理
2.构建多级缓存架构:例如,Nginx缓存+redis缓存+ehcache缓存
3.检测Mysql严重耗时业务进行优化。对数据库的瓶颈排查:例如超时查询、耗时较高事务等
4.灾难预警机制 。监控redis服务器性能指标,例如:CPU占用、CPU使用率、内存容量、查询平均响应时间、线程数
5.限流、降级。短时间范围内牺牲一些客户体验,限制一部分请求访问,降低应用服务器压力,待业务低速运转后再逐步放开访问
解决方案 - 术
1.LRU与LFU(按照访问量删除)切换
2.数据有效期策略调整
- 根据业务数据有效期进行分类错峰,A类90分钟,B类80分钟,C类70分钟
- 过期时间使用固定时间+随机值的形式,稀释集中到期的key的数量。随机时间是最有效的方法。
3.超热数据使用永久key
4.定期维护(自动+人工) 对即将过期数据做访问量分析,确认是否延时,配合访问量统计,做热点数据的延时
5.加锁 慎用!
总结:
缓存雪崩就是瞬间过期数据量太大,导致对数据库服务器造成压力。如能够有效避免过期时间集中,可以有效解决雪崩现象的出现(约40%),配合其他策略一起使用,并监控服务器的运行数据,根据运行记录做快速调整。
缓存击穿
数据库服务器崩溃
1.系统平稳运行过程中
2.数据库连接量瞬间激增
3.Redis服务器无大量key过期
4.Redis内存平稳,无波动
5.Redis服务器CPU正常
6.数据库崩溃
问题排查
1.Redis中某个key过期,该key访问量巨大
2.多个数据请求从服务器直接压到Redis后,均未命中
3.Redis在短时间内发起了大量对数据库中同一数据的访问
问题分析
1.单个key高热数据
2.key过期
解决方案
1、预先设定:以电商为例,每个商家根据店铺等级,指定若干款主打商品,在购物节期间,加大此类信息key的过期时长
注意:购物节不仅仅指当天,以及后续若干天,访问峰值呈现逐渐降低的趋势
2、现场调整:监控访问量,对自然流量激增的数据延长过期时间或设置为永久性key
3、后台刷新数据:启动定时任务,高峰期来临之前,刷新数据有效期,确保不丢失
4、二级缓存:设置不同的失效时间,保障不会被同时淘汰就行
5、加锁:分布式锁,防止被击穿,但是要注意也是性能瓶颈,慎重!没办法使用!
总结
缓存击穿就是单个高热数据过期的瞬间,数据访问量较大,未命中redis后,发起了大量对同一数据的数据库访问,导致对数据库服务器造成压力。应对策略应该在业务数据分析与预防方面进行,配合运行监控测试与即时调整策略,毕竟单个key的过期监控难度较高,配合雪崩处理策略即可。
缓存穿透
数据库服务器崩溃
1.系统平稳运行过程中
2.应用服务器流量随时间增量较大
3.Redis服务器 命中率随时间逐步降低
4.Redis内存平稳,内存无压力
5.Redis服务器CPU占用激增
6.数据库服务器压力激增
7.数据库崩溃
问题排查
1.Redis中大面积出现未命中
2.出现非正常URL访问
问题分析
1、获取的数据在数据库中也不存在,数据库查询未得到对应数据
2、Redis获取到null数据未进行持久化,直接返回
3、下次此类数据到达重复上述过程
4、黑客攻击服务器会采用这种方法
解决方案
1、缓存null
- 对查询结果为null的数据进行缓存(长期使用,定期清理),设定短时限,例如30-60秒,最高5分钟,否则就可能内存不足
2、白名单策略
- 提前预热各种分类数据id对应的bitmaps,id作为bitmaps的offset,相当于设置了数据白名单。当加载正常数据时,放行,加载异常数据时直接拦截(效率偏低)
- 使用布隆过滤器(有关布隆过滤器的命中问题对当前状况可以忽略)
3、实施监控:实时监控redis命中率(业务正常范围时,通常会有一个波动值)与null数据的占比。让这些访问进不来而不是获取到数据。(黑名单)
- 非活动时段波动:通常检测3-5倍,超过5倍纳入重点排查对象
- 活动时段波动:通常检测10-50倍,超过50倍纳入重点排查对象
4、key加密
- 问题出现后,临时启动防灾业务key,对key进行业务层传输加密服务,设定校验程序,过来的key校验
- 例如每天随机分配60个加密串,挑选2到3个,混淆到页面数据id中,发现访问key不满足规则,驳回数据访问
总结
缓存击穿访问了不存在的数据,跳过了合法数据的redis数据缓存阶段,每次访问数据库,导致对数据库服务器造成压力。通常此类数据的出现量是一个较低的值,当出现此类情况以毒攻毒,并及时报警。应对策略应该在临时预案防范方面多做文章。
无论是黑名单还是白名单,都是对整体系统的压力,警报解除后尽快移除。
性能监控
监控指标
监控指标
- 性能指标:Performance
- 内存指标:Memory
- 基本活动指标:Basic activity
- 持久性指标:Persistence
- 错误指标:Error
监控方式
工具
- Cloud Insight Redis
- Prometheus
- Redis-stat
- Redis-faina
- RedisLive
- zabbix
命令
- benchmark - 压测命令
- redis-cli
- monitor
- showlog
benchmark
命令:redis-benchmark [-h ] [-p ] [-c ] [-n <requests]> [-k ]
范例2 :100个连接,5000次请求对应的性能
redis-benchmark -c 100 -n 5000
monitor:打印服务器调试信息
showlong
命令:showlong [operator]
- get :获取慢查询日志
- len :获取慢查询日志条目数
- reset :重置慢查询日志
相关配置
#设置慢查询的时间下线,单位:微妙
slowlog-log-slower-than 1000
#设置慢查询命令对应的日志显示长度,单位:命令数
slowlog-max-len 100