TensorFlow深度学习
文章平均质量分 79
sky_Fantasy_qq
我是小白
展开
-
TensorFlow笔记之一:MNIST手写数字识别
本人刚刚开始接触深度学习不久,对于tensorflow的了解也有限,想通过tensorflow这个框架来学习深度学习及其优化与识别。现在直接进入主题。 1.手写识别的介绍: MNIST手写识别在机器学习中就像c语言中Hello World一样,MNIST数据集是一个机器视觉的数据集,它由几万张28X28像素点构成的手写数字,我们的任务就是向神经网络输入由这些像素点原创 2017-10-06 19:39:57 · 1863 阅读 · 2 评论 -
tensorflow实战之二:MNIST手写数字识别的优化1-代价函数优化
上一节我们介绍了最简单的tensorflow的手写识别模型,这一节我们将会介绍其简单的优化模型。我们会从代价函数,防止过拟合,以及优化器的3个方面来介绍优化过程。 1.代价函数的优化: 我们可以这样将代价函数理解为真实值与预测值的差距,我们神经网络训练的目的就是调整W,b等参数来让这个代价函数的值最小。上一节我们用到的是二次代价函数: 在Tensor原创 2017-10-07 12:09:24 · 2060 阅读 · 0 评论 -
tensorflow实战之三:MNIST手写数字识别的优化2-多层感知器
上一章我们用到交叉熵代价函数来优化我们的模型,但是最后的准确率也只有原创 2017-10-07 15:23:13 · 854 阅读 · 0 评论 -
tensorflow实战之四:MNIST手写数字识别的优化3-过拟合
这一节我们会从过拟合及优化器方面来优化我们的神经网络。 1.拟合:原创 2017-10-07 14:19:26 · 740 阅读 · 0 评论