自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

꧁༺ʚ凤⭐尘ɞ༻꧂

很高兴认识你!【互粉社区】https://bbs.csdn.net/forums/together 【论文速递 | 精选】https://bbs.csdn.net/forums/paper

  • 博客(245)
  • 资源 (21)
  • 收藏
  • 关注

原创 【论文精选】TPAMI2020 - PFENet_先验引导的特征富集网络_小样本语义分割

由于训练类的高级语义信息使用不当,查询目标与支持目标的空间不一致,目前的小样本分割框架仍然面临着对未见类的泛化能力降低的挑战。为了缓解这些问题,PFENet提出了先验引导特征富集网络(PFENet)。它包括:(1)一种无需训练的先验掩码生成方法,不仅保留了泛化能力,还提高了模型性能;(2)特征富集模块(FEM),通过自适应地用支持特征和先验掩码丰富查询特征来克服空间不一致性。在PASCAL-5i和COCO上的大量实验证明,所提出的先验生成方法和FEM方法都显著改进了基线方法。

2023-01-17 20:17:15 448 14

原创 【论文速递】CVPR2020 - CRNet:用于小样本分割的交叉参考网络

在过去的几年里,最先进的图像分割算法是基于深度卷积神经网络的。为了渲染一个具有理解概念能力的深度网络,人类需要收集大量像素级注释数据来训练模型,这是耗时且繁琐的。为了解决这一问题,最近提出了小样本分割。小样本分割的目的是学习一种只需要少量训练图像就可以推广到新类的分割模型。本文提出了一种用于小样本分割的交叉参考网络(CRNet)。与以往只预测查询图像中的掩码不同,本文提出的模型同时对支持图像和查询图像进行预测。通过交叉引用机制,我们的网络可以更好地找到两幅图像中同时出现的物体,从而帮助完成小样本分割任务。

2023-01-27 16:45:01 14 1

原创 【论文速递】WACV2022 - 基于小样本分割的多尺度Non-Novel片段消除方法

小样本分割的目的是设计一个泛化模型,在训练过程中,在少数支持图像的指导下,将查询图像从未见的类中分割出来,这些支持图像的类与查询的类一致。在以往的研究中,存在着两个领域特有的问题,即空间不一致性和对可见类的偏向。考虑到前一个问题,我们的方法在多尺度上比较支持特征图和查询特征图,使其成为尺度不可知的。为了解决后一个问题,在可用的类上训练一个监督模型,称为基础学习器,以准确地识别属于所见类的像素。因此,后续元学习器有机会在集成学习模型的帮助下丢弃属于已见类的区域,该集成学习模型协调元学习器和基础学习器。

2023-01-20 20:49:11 1413 3

原创 【论文速递】IJCV2022 - CRCNet:基于交叉参考和区域-全局条件网络的小样本分割

小样本分割的目的是学习一种只需要少量训练图像就可以推广到新类的分割模型。在本文中,我们提出了一种用于小样本分割的交叉参考和局部全局条件网络(CRCNet)。与以往只预测查询图像掩码的工作不同,我们提出的模型同时对支持图像和查询图像进行预测。我们的网络通过交叉引用机制可以更好地找到两幅图像中同时出现的物体,从而帮助完成小样本分割任务。为了进一步改进特征比较,我们开发了一个局部-全局条件模块来捕获全局和局部关系。此外,我们还开发了掩码优化模块,对前景区域进行循环优化预测。

2023-01-19 16:58:16 423 3

原创 【论文速递】WACV2022 - 从边界框标注学习小样本分割

*我们提出了一种新的弱监督小样本语义分割设置和一种元学习方法来应对新的挑战。**与现有设置不同,我们利用边界框标注作为元训练阶段的弱监督信号,即更有效的标签。包围框提供了比分割掩码更有效的标签表示,但包含感兴趣的对象和令人不安的背景。我们首先表明,使用包围框的元训练降低了最近的few-shot语义分割方法,这些方法通常是具有完整语义分割监督的元训练。我们假设这种挑战源于边界框表示的不纯信息。我们提出了一个伪三分图估计器和基于三分图注意的原型学习,以从包围框中提取更清晰的监督信号。

2023-01-18 21:19:40 1190

原创 【论文速递】CVPR2021 - 基于自适应原型学习和分配的小样本分割

原型学习被广泛应用于小样本分割。通常,通过平均全局对象信息从支持特征中获得单个原型。但是,使用一个原型来表示所有信息可能会导致歧义。本文提出了超像素引导聚类(SGC)和引导原型分配(GPA)两个新模块,用于多原型抽取和分配。具体来说,SGC是一种不需要参数和训练的方法,通过聚合相似的特征向量来提取更有代表性的原型,而GPA能够选择匹配的原型来提供更准确的指导。通过将SGC和GPA集成在一起,我们提出了自适应超像素引导网络(ASGNet),这是一种轻量级模型,可以适应物体的大小和形状变化。

2023-01-16 17:11:47 725 2

原创 【论文速递】ECCV2022 - 开销聚合与四维卷积Swin Transformer_小样本分割

本文提出了一种新的开销聚合网络,称为体积聚合Transformer(VAT),用于小样本分割。Transformer的使用可以通过对全局接受域的自注意力而有利于相关映射聚合。但是,用于Transformer处理的相关映射的标记化可能是有害的,因为标记边界上的不连续减少了标记边缘附近可用的本地上下文,并减少了归纳偏差。为了解决这个问题,我们提出了一个4D卷积Swin Transformer,其中高维Swin Transformer之前是一系列小核卷积,将局部上下文传递给所有像素,并引入卷积归纳偏差。

2023-01-15 21:39:50 387 3

原创 【互粉社区】互粉社区为大家提供优质【求粉】和【评论】模板啦!

互粉社区为大家提供优质【求粉】和【评论】模板啦!

2023-01-14 19:53:08 798 5

原创 【论文速递】ECCV2022 - 密集高斯过程的小样本语义分割

小样本分割是一项具有挑战性的密集预测任务,它需要分割一个新的查询图像,只给予一个小的注释支持集。因此,关键问题是设计一种方法,可以从支持集中聚合详细信息,同时对外观和上下文的巨大变化具有健壮性。为此,我们提出了一种基于密集高斯过程(GP)回归的小样本分割方法。给定支持集,我们的密集GP学习从局部深度图像特征到掩码值的映射,能够捕获复杂的外观分布。此外,它提供了一种捕获不确定性的原则性手段,作为CNN解码器获得的最终分割的另一个强大线索。

2023-01-14 12:44:28 336 4

原创 【论文速递】ACM2022 - 基于嵌入自适应更新和超类表示的增量小样本语义分割

增量小样本语义分割(IFSS)的目标是逐步扩展模型的能力,以分割只有少量样本监督的新类别图像。然而,在旧类上学习到的特征可能会显著漂移,导致灾难性的遗忘。此外,在新类上进行像素级分割的样本很少,导致每个学习会话中都存在臭名昭著的过拟合问题。在本文中,我们将基于类的知识显式表示为类别嵌入和超类嵌入,其中类别嵌入描述独占语义属性,超类嵌入表示类共享语义属性。针对IFSS问题,从两个方面提出了嵌入自适应更新网络和超类表示网络。

2023-01-13 17:00:41 250 4

原创 【论文速递】CVPR2022 - 泛化的小样本语义分割

语义分割模型的训练需要大量精细标注的数据,很难快速适应不满足这一条件的新类。小样本分割(FS-Seg)通过许多约束来解决这个问题。在本文中,我们引入了一种新的基准,称为泛化的小样本语义分割(GFSSeg),以分析同时分割具有很少示例的新类别和具有足够示例的基本类别的泛化能力。这是首次研究表明,以往最先进的代表性FS-Seg方法在GFS-Seg中存在不足,其性能差异主要来自FS-Seg的约束设置。为了使GFS-Seg易于处理,

2023-01-13 16:20:09 552 8

原创 【论文速递】TPAMI2022 - 小样本分割的整体原型激活

近年来,传统的基于深度cnn的分割方法取得了令人满意的性能,但其本质上是大数据驱动技术,难以推广到未见类别。随后开发了小样本分割,以在低数据状态下执行相关操作。遗憾的是,由于训练范式和网络架构的因素,现有方法容易对基类目标进行过拟合,分割边界不准确,在一定程度上阻碍了研究的进展。在本文中,我们提出了一个整体原型激活(HPA)网络来缓解这些问题。其新颖的设计可以概括为三个方面:1)一种无需训练的派生基类先验表示的方案。

2023-01-12 18:47:22 366 4

原创 【论文速递】CVPR2022 - 学习 什么不能分割:小样本分割的新视角

近年来,小样本分割(FSS)得到了广泛的发展。以往的大部分工作都是通过分类任务衍生的元学习框架来实现泛化;然而,训练后的模型偏向于所见的类,而不是理想的未知类,从而阻碍了对新概念的识别。本文提出了一种新颖而直接的见解来缓解这一问题。具体来说,我们在传统的FSS模型(元学习器)上应用了一个额外的分支(基本学习器)来显式地识别基类的目标,即不需要分割的区域。然后,自适应整合这两个学习器并行输出的粗结果,得到精确的分割预测。

2023-01-12 13:42:50 152 1

原创 【论文速递】TNNLS2022 - 一种用于小样本分割的互监督图注意网络_充分利用有限样本的视角

全监督语义分割在许多计算机视觉任务中表现良好。然而,这是耗时的,因为训练一个模型需要大量的像素级注释样本。小样本分割最近成为解决这个问题的一种流行方法,因为它只需要少量带注释的样本就可以推广到新的类别。然而,如何充分利用有限的样本仍然是一个悬而未决的问题。因此,本文提出了一种相互监督的小样本分割网络。首先,对中间卷积层的特征映射进行融合,增强特征表示能力;其次,将支持图像和查询图像组合成二部图,采用图注意网络避免空间信息丢失,增加支持图像像素数,指导查询图像分割;

2023-01-11 19:47:17 145 4

原创 【论文速递】ECCV2022 - ConMatch:置信度引导的半监督学习

​ 我们提出了一种新的半监督学习框架,智能地利用模型预测之间的一致性正则化,从图像的两个强增强视图,由伪标签置信度加权,称为ConMatch。虽然最新的半监督学习方法使用图像的弱增强视图和强增强视图来定义方向一致性损失,但如何为两个强增强视图之间的一致性正则化定义这种方向仍未探索。为了解释这一点,我们提出了新的伪标签置信度测量方法,通过弱增强视图作为非参数和参数方法的锚。特别是在参数化方法中,我们首次提出了在网络中学习伪标签置信度的方法,这是通过骨干网模型端到端学习的。

2023-01-11 16:43:13 201

原创 【论文速递】9位院士Science88页长文:人工智能的进展、挑战与未来

# 【论文速递】9位院士Science88页长文:人工智能的进展、挑战与未来**【论文原文】**:Intelligent Computing: The Latest Advances, Challenges and Future```获取地址:https://spj.science.org/doi/10.34133/icomputing.0006```## 摘要:​ 计算是人类文明发展的重要动力。近年来,我们见证了**智能计算**的兴起。在大数据、人工智能、物联网时代,智能计算的新理论、

2023-01-11 13:42:05 615 1

原创 MOT_Challenge官方代码TrackEval介绍

版权声明:本文为博主原创文章,遵循版权协议,转载请附上原文出处链接和本声明。原文链接:凤⭐尘 》》https://www.cnblogs.com/phoenixash/是多目标跟踪领域最为常用的benchmarkCLEAR MOT Metrics认为一个好的多目标跟踪器应该有如下三点特性:1.所有出现的目标都要能够及时找到(检测的性能)2.找到目标位置要尽可能可真实目标位置一致(检测的性能)3.保持追踪一致性,避免跟踪目标的跳变 (匹配的性能)MeasureBetterPerfect。

2023-01-08 13:53:41 473 16

原创 招生简章 | 欢迎报考中科院空天院网络信息体系技术重点实验室(七室)

空天院七室围绕国家网络信息体系战略需求,承担智能数字地球国家重大工程,持续开展。

2023-01-07 23:07:22 293

原创 国科大抢课避坑+选课指南+教务系统操作

博客园: https://www.cnblogs.com/phoenixash/p/13669461.html9月12日12:30,本菜鸡终于经历了国科大传说中的抢课大战,虽然自己之前准备的较多,但还是在抢课的时候掉进了不少坑里,趁现在还记忆犹新,记录一下,也给后来的学弟学妹们提个醒,不要掉进无数学长学姐们跳过的旧坑T_T!!!

2023-01-07 13:49:44 737 3

原创 【菜菜的CV进阶之路 - 深度学习环境搭建】常用命令和配置指南

【菜菜的CV进阶之路 - 深度学习环境搭建】常用命令和配置指南

2023-01-06 17:15:30 584 7

原创 【菜菜的CV进阶之路 - 深度学习环境搭建】没想到吧 - 不要装国产软件

我装了google chrome和wechat后,电脑总是莫名死机!最后咨询了师兄才知道,国产软件,除了网易云,其他都不要装!至于google chrome,也先不要装,因为20.04的预装内核还不稳定,需要更新才可以:、ubuntu重装(win10双系统)

2023-01-06 17:13:26 58

原创 【菜菜的CV进阶之路 - 深度学习环境搭建】配置Ubuntu深度学习环境

可能是版本没有对上或安装包没有下好(我第二次安装才成功),可以从官网或从[这里][http://http.download.nvidia.com/XFree86/Linux-x86_64/460.56/]重新下载,再次尝试就好了。然后cd进入到下载好的.run文件目录中(我安装的是Ubuntu20.04中文版,所以直接下载后的目录为/home/xxx/下载,但是这里不会正常显示中文,因此推荐把下载后的.run文件换个位置再进行下面的操作。所以打开官网,选择对应版本进行安装(下图以pip安装为例)。

2023-01-06 17:10:36 447

原创 【菜菜的CV进阶之路 - 深度学习环境搭建】常用软件安装

Firefox中有设置浏览器代理的功能,选择进行手动代理,参数同系统的手动代理参数,只能够在electron-ssr开启的状态下正常上网(包括外网),之后切换浏览器代理模式为“使用系统代理设置”,在关闭electron-ssr的情况下能够正常访问大陆网站,在开启时能够访问外网。这里我选择重建映射, 我们将/usr/bin/python 映射到 /usr/bin/python3 上去, 这样间接就相当于搭建了一座桥梁到 python3.6 上,就不会发生找不到命令的问题了。下载最新的Linux安装包,然后。

2023-01-06 17:05:59 706 5

原创 【菜菜的CV进阶之路 - 深度学习环境搭建】windows+ubuntu20.04双系统安装

新学期,配了台新电脑(双路2080ti+5800x+64GB内存+500GB固态+2TB机械),师兄忙于毕设,没给装ubuntu,自己装一下咯~

2023-01-06 16:58:33 395

原创 【nvidia jetson xavier】Deepstream 自定义检测Yolo v5模型吞吐量测试

【nvidia jetson xavier】Deepstream 自定义检测Yolo v5模型吞吐量测试

2023-01-05 21:41:04 260

原创 【nvidia jetson xavier】Deepstream 自定义检测Yolo v5模型部署

【nvidia jetson xavier】Deepstream 自定义检测Yolo v5模型部署

2023-01-05 21:36:38 140 2

原创 【nvidia jetson xavier】Deepstream Yolox,Yolov4,Yolov5模型部署

【nvidia jetson xavier】Deepstream Yolov4,Yolov5模型部署

2023-01-05 21:31:22 200

原创 【已解决】CommandNotFoundError: Your shell has not been properly configured to use ‘conda activate‘.

【代码】【已解决】CommandNotFoundError: Your shell has not been properly configured to use 'conda activate'.

2022-12-01 19:57:18 205

原创 【菜菜的CV进阶之路-半监督学习】主动学习和半监督学习 - 调研总结

所以有了这么一篇关于主动学习的调研,如有问题,欢迎交流、批评、指正!主动学习(Active Learning)的大致思路就是:通过机器学习的方法获取到那些比较**“难”分类的样本数据,让人工再次确认和审核**,然后将人工标注得到的数据再次使用有监督学习模型或者半监督学习模型进行训练,逐步提升模型的效果,将人工经验融入机器学习的模型中。可以看到主动学习侧重于:挖掘难例样本和人工标注或再次标注(注意这里的数据可以是标注的和未标注的)

2022-10-07 20:38:01 408

原创 【解决】cannot import name ‘__NewEmptyTensorOp‘

转载请附上原文出处链接和本声明。原文链接:凤⭐尘 》》https://www.cnblogs.com/phoenixash/网上的解决方法:网上有一种说法就是将torch和torchvision更新到最新版本,我的版本本来就是最新版本了,但还是出现这些问题。正确的解决方案:1、Pytorch 1.5 版本以下出现这个问题是因为Pytorch 版本和 Python 版本不兼容的问题,安装相应的兼容版本即可兼容版本查询:https://github.com/pytorch/vision#insta

2022-04-05 19:57:08 2232

原创 Hybrid Multiple Attention Network for Semantic Segmentation in Aerial Images

论文阅读:Hybrid Multiple Attention Network for Semantic Segmentation in Aerial Images作者声明版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。原文链接:凤⭐尘 》》https://www.cnblogs.com/phoenixash/p/15474915.html基本信息**\1.标题:**Hybrid Multiple Attention Network for

2021-10-28 12:04:01 600

原创 【nvidia jetson xavier】 Linux系统安装+Deepstream 5.1环境部署

作者声明版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。原文链接:https://www.cnblogs.com/phoenixash/p/15410089.html【nvidia jetson xavier】 Linux系统安装+Deepstream 5.1环境部署参考Getting Started With Jetson Xavier NX Developer Kit | NVIDIA Developer (https://develope

2021-10-15 10:54:59 739

原创 【nvidia jetson xavier】 Deepstream Yolov3示例模型运行

作者声明版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。原文链接:https://www.cnblogs.com/phoenixash/p/15403392.htmlDeepstream Yolov3示例模型运行https://blog.csdn.net/u010414589/article/details/115338399DeepStream在安装完成后,默认会自动安装到以下目录内:/opt/nvidia/deepstream/deeps

2021-10-13 18:10:47 659

原创 【nvidia jetson xavier】 风扇开机自启动

作者声明版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。原文链接:https://www.cnblogs.com/phoenixash/p/15401115.html风扇开机自启动:- 打开风扇,并设置开机启动(两种方法)https://blog.csdn.net/u013171226/article/details/107680325这里用第二种:1.修改 /sys/devices/pwm-fan/target_pwm文件权限sudo

2021-10-13 10:54:35 310

原创 A Semisupervised CRF Model for CNN-Based Semantic Segmentation With Sparse Ground Truth

论文阅读:A Semisupervised CRF Model for CNN-Based Semantic Segmentation With Sparse Ground Truth作者声明版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。原文链接:凤⭐尘 》》https://www.cnblogs.com/phoenixash/p/15390699.html基本信息**\1.标题:**A Semisupervised CRF Model

2021-10-10 21:08:55 309

原创 DIVIDEMIX: LEARNING WITH NOISY LABELS AS SEMI-SUPERVISED LEARNING

论文阅读:DIVIDEMIX: LEARNING WITH NOISY LABELS AS SEMI-SUPERVISED LEARNING作者说明版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。原文链接:凤⭐尘 》》https://www.cnblogs.com/phoenixash/p/15369008.html基本信息**\1.标题:**DIVIDEMIX: LEARNING WITH NOISY LABELS AS SEMI-SUP

2021-10-08 14:26:17 335

原创 Self-Training using Selection Network for Semi-supervised Learning

论文阅读:Self-Training using Selection Network for Semi-supervised Learning作者说明版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。原文链接:凤⭐尘 》》https://www.cnblogs.com/phoenixash/p/15368992.html基本信息**\1.标题:**Self-Training using Selection Network for Semi-s

2021-10-08 14:25:40 161

原创 Remote Sensing Images Semantic Segmentation with General Remote Sensing Vision Model via a Self-Supe

论文阅读:Remote Sensing Images Semantic Segmentation with General Remote Sensing Vision Model via a Self-Supervised Contrastive Learning Method作者声明版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。原文链接:https://www.cnblogs.com/phoenixash/p/15371354.html基

2021-10-08 14:24:57 296

原创 Semi-supervised semantic segmentation needs strong, varied perturbations

论文阅读:Semi-supervised semantic segmentation needs strong, varied perturbations作者声明版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。原文链接:凤⭐尘 》》https://www.cnblogs.com/phoenixash/p/15379232.html基本信息**\1.标题:**Semi-supervised semantic segmentation need

2021-10-08 14:24:06 444

原创 【论文阅读】A Three-Stage Self-Training Framework for Semi-Supervised Semantic Segmentation

论文阅读:A Three-Stage Self-Training Framework for Semi-Supervised Semantic Segmentation作者说明版权声明:本文为博主原创文章,转载请附上原文出处链接和本声明。本文链接:https://www.cnblogs.com/phoenixash/p/15364758.html基本信息**\1.标题:**A Three-Stage Self-Training Framework for Semi-Supervised Sema

2021-10-04 18:27:38 289

论文精选TPAMI2020 - PFENet\-先验引导的特征富集网络\-小样本语义分割

【论文精选】TPAMI2020 - PFENet\_先验引导的特征富集网络\_小样本语义分割

2023-01-13

论文速递TPAMI2022 - 小样本分割的整体原型激活

【论文速递】TPAMI2022 - 小样本分割的整体原型激活

2023-01-12

论文速递TNNLS2022 - 一种用于小样本分割的互监督图注意网络-充分利用有限样本的视角

【论文速递】TNNLS2022 - 一种用于小样本分割的互监督图注意网络_充分利用有限样本的视角

2023-01-11

论文速递9位院士Science的长文:人工智能的进展、挑战与未来

【论文速递】9位院士Science的长文:人工智能的进展、挑战与未来

2023-01-11

oracle示例数据库OT.zip

该zip文件包含以下的SQL文件: 文件:ot_create_user.sql - 用于创建OT用户和授予权限。文件:ot_schema.sql - 用于创建数据库对象,如表,约束等文件:ot_data.sql - 用于将数据加载到表中。文件:ot_drop.sql - 用于删除示例数据库中的所有对象。亲测可用,完整数据库~易百教程所用相同(oraok.com)_11g.v1.zip

2019-09-17

VC6.0win10兼容EasyX_2013冬至版.zip

vc++6.0安装程序和graphics.h手动配置文件包【验证成功】

2019-05-15

VC6.0win10兼容.zip

vc++6.0安装程序【验证成功】

2019-05-15

java多线程模拟处理银行的实时转账交易

模拟实现多线程处理银行的实时转账交易,代码完整,可以完美运行~

2018-12-15

ssd 512x512的权重

SSD-512 VGG-based VOC07+12+COCO trainval VOC07 test ,如果需要300X300的可以去:https://download.csdn.net/download/qq_36396104/10792337

2018-11-18

SSD-300 VGG-based weights 权重包含两种ssd300的权重

SSD_300_vggmodel,包含两种ssd300: Model Training data Testing data mAP SSD-300 VGG-based VOC07+12+COCO trainval VOC07 test SSD-300 VGG-based VOC07+12 trainval VOC07 test -

2018-11-18

防止windows10自动更新exe文件

一个防止window 10 自动更新的exe文件,来解决windows自动更新无法停掉的问题

2018-10-11

实验_存储器设计与访问,内含Sinwave源码以及,sinwave演示视频,自己录制的

实验_存储器设计与访问,内含Sinwave源码以及,sinwave演示视频,自己录制的

2018-08-09

hadoop 依赖的jar包 包括asm-3.2什么的 一共21 个

hadoop 依赖的jar包 包括asm-2.2.3 aspectjrt-1.8.10 aspectjtools-1.7.4 commons-beanutils-1.9.3 commons-beanutils-core-1.8.3 commons-cli-1.2 commons-codec-1.10 commons-collections-3.2.1 commons-configuration-1.10 commons-daemon-1.0.15 commons-digester-2.1 commons-el-1.0 commons-httpclient-3.1 commons-io-2.4 commons-lang-2.6 commons-logging-1.2 commons-logging-api-1.1 commons-math3-3.6.1 commons-net-3.3 core-3.1.1 hadoop-core-1.2.1

2018-07-17

计算机组成原理 第2版 唐朔飞课后答案

计算机组成原理 第2版 唐朔飞课后答案 完整的答案 可以放心使用

2018-03-09

CursorFX 2.0 Plus[CR]无需更改SID破解版

只需要将压缩包里的文件按说明弄好就行,win10可能会有些问题

2018-01-11

《机器学习实战》中决策树python2.7代码经过加工修改后在python3.0可以完美运行的代码

《机器学习实战》源代码中使用的python2.7 在python3.0中部分是无法使用的,所以这经过了我的调试修改后在python3.0中是可以完美运行的决策树代码 内含数据样本,便于学习

2017-12-03

《机器学习实战》中Bayes 朴素贝叶斯 python2.7代码经过加工修改后在python3.0可以完美运行的代码

《机器学习实战》源代码中使用的python2.7 在python3.0中部分是无法使用的,所以这经过了我的调试修改后在python3.0中是可以完美运行的 朴素贝叶斯代码 内含数据样本,便于学习

2017-12-03

《机器学习实战》中KNNpython2.7代码经过加工修改后在python3.0可以完美运行的代码

《机器学习实战》源代码中使用的python2.7 在python3.0中部分是无法使用的,所以这经过了我的调试修改后在python3.0中是可以完美运行的 内含数据样本,便于学习

2017-12-03

aspectjrt& aspectjweaver&aspectj&aopalliance.jar

aspectjrt.jar aspectjweaver.jar aspectj.jar aopalliance.jar 亲测可用~

2017-08-16

aspectjweaver-1.6.2.jar

aspectjweaver-1.6.2.jar

2017-08-16

aspectj-1.6.8.jar

spectj-1.6.8.jar

2017-08-16

aopalliance-1.0.jar

aopalliance-1.0.jar

2017-08-16

aspectjrt-1.6.9.jar

aspectjrt-1.6.9.jar

2017-08-16

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除