机器学习
智慧地球(AI·Earth)社区
“星辰大海,AI•领航 | 智慧地球,共创未来” 来自中科院和高校的领域内专家博主共同打造智慧地球(AI•Earth)学术技术极客社区!【官方地址】:https://devpress.csdn.net/aiearth,交流前沿学术!分享极客技术!领略智慧地球风采!一起寻找生命中的光!
展开
-
计算机视觉-图像处理入门(一):linux(ubuntu)配置Openface+测试
图像处理入门(一):linux(ubuntu)配置Openface+测试至于为什么要写这么基础的东西,em....说多了都是泪TT...linux配置Openface+测试一、了解Openface:官方文档:http://cmusatyalab.github.io/openface/setup/二、我遇到的坑爹问题TT:首先我使用的是比较新版的ubuntu系统,而问题就出现在它比较新!!!:问题1...原创 2018-03-29 20:09:42 · 3548 阅读 · 1 评论 -
【机器学习-决策树模块-信息论相关必备知识】
决策树--信息论必备知识------------------------------------------------------------------------------------------------------------------------- 在学习决策树的时候,最先遇到的一个与数学有关的的问题就是信息增益,在机器学习实战这本书中,构造ID3决策树的时候,使用信息论度量信息...原创 2018-02-08 15:41:19 · 973 阅读 · 0 评论 -
【机器学习-决策树模块-基础算法-2)C4.5算法】
承接上一篇决策树ID3算法:http://blog.csdn.net/qq_36396104/article/details/79278779二、C4.5C4.5算法是Quinlan提出的一系列算法,包括C4.5 决策树、C4.5剪枝和 C4.5规则(C4.5 Tree-C4.5Pruning-C4.5Rules)。它继承了ID3算法的优点,并对ID3算法进行了改进:C4.5克服了ID3的4个缺点...原创 2018-03-11 19:29:33 · 1143 阅读 · 0 评论 -
【转】通俗理解信息熵
前段时间德川和我讲解了决策树的相关知识,里面德川说了一下熵,今天整理了一下,记录下来希望对大家理解有帮助~信息熵的公式先抛出信息熵公式如下: 其中代表随机事件X为的概率,下面来逐步介绍信息熵的公式来源! 信息量信息量是对信息的度量,就跟时间的度量是秒一样,当我们考虑一个离散的随机变量x的时候,当我们观察到的这个变量的一个具体值的时候,我们接收到了多少信息呢?...转载 2018-11-27 18:05:01 · 317 阅读 · 0 评论 -
【转】深入浅出理解决策树算法(一)-核心思想
算法思想决策树(decision tree)是一个树结构(可以是二叉树或非二叉树)。其每个非叶节点表示一个特征属性上的测试,每个分支代表这个特征属性在某个值域上的输出,而每个叶节点存放一个类别。使用决策树进行决策的过程就是从根节点开始,测试待分类项中相应的特征属性,并按照其值选择输出分支,直到到达叶子节点,将叶子节点存放的类别作为决策结果。总结来说:决策树模型核心是下面几部分:...转载 2018-11-27 18:03:59 · 667 阅读 · 0 评论 -
【转】通俗理解条件熵
前面我们总结了信息熵的概念通俗理解信息熵 - 知乎专栏,这次我们来理解一下条件熵。我们首先知道信息熵是考虑该随机变量的所有可能取值,即所有可能发生事件所带来的信息量的期望。公式如下: 我们的条件熵的定义是:定义为X给定条件下,Y的条件概率分布的熵对X的数学期望 这个还是比较抽象,下面我们解释一下:设有随机变量(X,Y),其联合概率分布为 条件熵H(Y|X)...转载 2018-11-27 18:15:27 · 608 阅读 · 0 评论 -
【转】深入浅出理解决策树算法(二)-ID3算法与C4.5算法
从深入浅出理解决策树算法(一)-核心思想 - 知乎专栏文章中,我们已经知道了决策树最基本也是最核心的思想。那就是其实决策树就是可以看做一个if-then规则的集合。我们从决策树的根结点到每一个都叶结点构建一条规则。并且我们将要预测的实例都可以被一条路径或者一条规则所覆盖。如下例:假设我们已经构建好了决策树,现在买了一个西瓜,它的特点是纹理是清晰,根蒂是硬挺的瓜,你来给我判断一下是好瓜还是坏...转载 2018-11-27 19:56:38 · 660 阅读 · 0 评论 -
决策树ID3算法和C4.5算法实战
老师给的题目:代码实现【两种算法合在一个文件里】: from numpy import *def createDataSet(): dataSet = [[1, 1, 1, 0, 'no'], [1, 1, 1, 1, 'no'], [0, 1, 1, 0, 'yes'], [-1,...原创 2018-11-27 22:16:39 · 543 阅读 · 0 评论 -
迁移学习 Transfer Learning(可能是目前最全的迁移学习资料库?)
https://github.com/jindongwang/transferlearning迁移学习 Transfer Learning(可能是目前最全的迁移学习资料库?)Everything about Transfer Learning (Probably the most complete repository?). Your contribution is highly va...转载 2019-02-23 10:05:38 · 7409 阅读 · 3 评论 -
机器学习实战_初识kNN算法_理解其python代码
这是经过我修改后能在python3.0中完美运行的KNN project,可以直接拿来学习: http://download.csdn.net/download/qq_36396104/10142842以下为我搜索后结合自己的想法编写,如有侵权,可联系我核实后删除(恕我小白一只~) (一) python基础: numpy: 1、shape函数是numpy.core.from原创 2017-07-20 12:16:39 · 684 阅读 · 0 评论 -
机器学习实战_初识决策树算法_理解其python代码(一)
这是经过我修改后能在python3.0中完美运行的Tree决策树 project源码,可以直接拿来学习: http://download.csdn.net/download/qq_36396104/10142842(一)计算给定数据集的香农熵(个人理解为计算给定信息集纯度的一种数学计算指标):from math import logdef calcShannonEnt(dataSet):#ca原创 2017-08-08 14:42:00 · 739 阅读 · 0 评论 -
最大似然估计(Maximum likelihood estimation)(通过例子理解)
之前看书上的一直不理解到底什么是似然,最后还是查了好几篇文章后才明白,现在我来总结一下吧,要想看懂最大似然估计,首先我们要理解什么是似然,不然对我来说不理解似然,我就一直在困惑最大似然估计到底要求的是个什么东西,而那个未知数θ到底是个什么东西TT原博主写的太好了,这里 我就全盘奉上~似然与概率在统计学中,似然函数(likelihood function,通常简写为likelihood,似然)是一个非转载 2017-10-07 20:54:14 · 45587 阅读 · 18 评论 -
【机器学习-决策树模块-基础算法-1)ID3算法】
决策树最最最基础的三个算法: 对于什么是决策树,决策树的基本概念网上已经多的不能再多了这里不再赘述,直接切入正题,决策树的算法以及实现。至于遇到的必须要掌握的信息论相关知识,我会在这篇文章里根据自己遇到的知识来持续更新:点击打开链接:(http://blog.csdn.net/qq_36396104/article/details/79275836)------------------------...原创 2018-02-09 10:21:00 · 1053 阅读 · 0 评论 -
机器学习实战 决策树代码 计算香农熵 Error return arrays must be of ArrayType
from math import logimport xlrd***# from numpy import ****import operatordef calcShannonEnt(dataSet):#calculata shannonEnt numEntries = len(dataSet) labelCounts = {} for featVec in dataS原创 2017-12-02 16:41:31 · 7097 阅读 · 2 评论 -
机器学习实战_初识朴素贝叶斯算法_理解其python代码(二)
python 基础:中间还有pickle二进制读取文件部分的error这个可以参见:机器学习实战初识决策树(ID3)算法理解其python代码(二)的第四部分append: Appends object at end.:x = [1, 2, 3]x.append([4, 5])print (x)[1, 2, 3, [4, 5]]extend: Extends list by appending原创 2017-08-15 10:38:49 · 501 阅读 · 0 评论 -
机器学习实战_初识朴素贝叶斯算法_理解其python代码(一)
这是经过我修改后能在python3.0中完美运行的Bayes project源代码,可以直接拿来学习: http://download.csdn.net/download/qq_36396104/10142849一:加载数据的代码:def loadDataSet(): postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help'原创 2017-08-14 16:45:39 · 472 阅读 · 0 评论 -
补:机器学习实战_初识决策树(ID3)算法的绘制树形图的代码
python基础: 中间可能会遇到的一些问题:主要是Python2.x与3.x的差别导致的: firstStr = myTree.keys()[0] #Clearly you’re passing in d.keys() to your shuffle function. # Probably this was written with python2.x (whe原创 2017-08-09 17:46:02 · 652 阅读 · 0 评论 -
机器学习实战_初识决策树(ID3)算法_理解其python代码(二)
python递归构建决策树:Python 基础: count()方法: Python count() 方法用于统计字符串里某个字符出现的次数。可选参数为在字符串搜索的开始与结束位置。 示例:>>> a = [-1, 3, 'aa', 85] # 定义一个list>>> a[-1, 3, 'aa', 85]>>> del a[0] # 删除第0个元素>>> a[3, 'aa', 85]原创 2017-08-08 22:12:49 · 896 阅读 · 0 评论 -
机器学习算法-聚类(一、性能度量和距离计算)
最近正式进入到机器学习的理论学习中啦,准备写一些笔记来加深我对机器学习算法的理解~所谓聚类在我的理解中是: 将数据集中的样本划分为若干个不相交的子集,每个子集即为一个簇: 它可用于寻找数据内在的分布结构,也可作为其它学习任务的前驱过程,来提炼数据以下是聚类算法涉及的两个基本问题:性能度量和距离计算:聚类是将样本划分为若干互不相交的子集(样本簇),当然我们希望是簇内相似度高原创 2017-10-06 18:05:03 · 9819 阅读 · 0 评论