音频token化

import torchaudio
from torchaudio.transforms import Resample, MelSpectrogram

class AudioProcessor:
    """
    Example:
        file_path = 'path_to_your_audio_file.mp3'
        processor = AudioProcessor(file_path)
        processed_audio = processor.get_processed_audio()

        # processed_audio: Tensor of shape (n, d), where 'n' is the number of time frames,
        # and 'd' is the feature dimension (e.g., flattened mel frequency channels).
    """
    def __init__(self, file_path, new_sample_rate=16000):
        self.file_path = file_path
        self.new_sample_rate = new_sample_rate
        self.waveform, self.original_sample_rate = self.load_audio()
        self.waveform = self.resample_audio()
        self.mel_spectrogram = self.compute_mel_spectrogram()

    def load_audio(self):
        waveform, sample_rate = torchaudio.load(self.file_path)
        return waveform, sample_rate

    def resample_audio(self):
        if self.original_sample_rate != self.new_sample_rate:
            resampler = Resample(self.original_sample_rate, self.new_sample_rate)
            waveform = resampler(self.waveform)
        else:
            waveform = self.waveform
        return waveform

    def compute_mel_spectrogram(self, n_fft=2048, hop_length=512, n_mels=128):
        mel_spectrogram = MelSpectrogram(
            sample_rate=self.new_sample_rate,
            n_fft=n_fft,
            hop_length=hop_length,
            n_mels=n_mels
        )
        return mel_spectrogram(self.waveform)

    def get_processed_audio(self):
        mel_spec = self.mel_spectrogram.reshape(-1, self.mel_spectrogram.size(2))
        mel_spec = mel_spec.transpose(0, 1)
        return mel_spec

### GPT-SoVITS 流式处理首 token 实现方法 在基于GPT-SoVITS架构的语音合成系统中,流式处理机制对于实现实时性和高效性至关重要。当涉及到首token的处理时,该过程旨在最小延迟并优资源利用。 #### 初始阶段 为了启动流式处理流程,在接收到输入序列之前,需预先加载必要的模型组件和配置参数。这包括但不限于初始解码器状态以及设置超参来控制生成行为[^1]。 ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained('path_to_model') model = AutoModelForCausalLM.from_pretrained('path_to_model').eval() ``` #### 处理首个 Token 一旦准备好环境,便可以从用户提供的文本或音频片段提取特征表示作为初始输入。针对第一个token而言,通常会采用特殊的起始标记(如<s>),它标志着新句子或话语单元的开端。此特殊token被编码并通过网络前向传播以激活相应的神经元活动模式[^2]。 ```python input_ids = tokenizer('<s>', return_tensors='pt')['input_ids'] with torch.no_grad(): outputs = model.generate(input_ids=input_ids, max_length=50, do_sample=True) first_token_output = tokenizer.decode(outputs[:, input_ids.shape[-1]:][0], skip_special_tokens=True) print(f'First generated token output: {first_token_output}') ``` 上述代码展示了如何使用预定义的起始符进行首次预测,并获取后续可能产生的字符或单词之一。值得注意的是,实际应用场景下可能会涉及更复杂的逻辑用于管理上下文窗口大小、温度调节等因素影响最终输出质量。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值