关于Resnet50和ResNeXt50的参数量的简单计算(只考虑卷积层和全连接层)

本文详细计算了Resnet50和ResNeXt50模型的参数量,通过对比发现ResNeXt50在采用cardinality方式时,各组参数存在共享,从而减少了总参数量。通过对各卷积层和全连接层的参数分析,得出Resnet50约有25.5百万参数,而ResNeXt50约为25.0百万参数。
摘要由CSDN通过智能技术生成

主要是我想知道ResNeXt50按cardinality方式每组是不是共享了参数?

参考一张图:https://www.zhihu.com/question/323424817

上面已经写了Resnet50和ResNeXt50的参数量

Resnet50的参数量:

1.conv1: 3(jpg输入三通道)*64(输出64通道)*7*7(卷积核参数)=9048

2.conv2: (64*64*1*1+64*64*3*3+64*256*1*1)*1+(256*64*1*1+64*64*3*3+64*256*1*1)*2=57344+139264=196608

                  (64*256*1*1)*1+(256*256*1*1)*2=16384+131072=147456

3.conv3:(256*128*1*1+128*128*3*3+128*512*1*1)*1+(512*128*1*1+128*128*3*3+1

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值