Datawhale公益AI组队学习Task3-5

一、过拟合、欠拟合及解决方案

一类是模型无法得到较低的训练误差,我们将这一现象称作欠拟合(underfitting);另一类是模型的训练误差远小于它在测试数据集上的误差,我们称该现象为过拟合(overfitting)。 在实践中,我们要尽可能同时应对欠拟合和过拟合。虽然有很多因素可能导致这两种拟合问题,在这里我们重点讨论两个因素:模型复杂度和训练数据集大小。
模型复杂度过低可能会引起欠拟合,复杂度过高可能会引起过拟合,一般来说,如果训练数据集中样本数过少,特别是比模型参数数量(按元素计)更少时,过拟合更容易发生。此外,泛化误差不会随训练数据集里样本数量增加而增大。因此,在计算资源允许的范围之内,我们通常希望训练数据集大一些,特别是在模型复杂度较高时,例如层数较多的深度学习模型。
权重衰减:权重衰减等价于 L2 范数正则化(regularization)。正则化通过为模型损失函数添加惩罚项使学出的模型参数值较小,是应对过拟合的常用手段。
丢弃法:由于在训练中隐藏层神经元的丢弃是随机的,即h1,…,h5都有可能被清零,输出层的计算无法过度依赖h1,…,h5中的任一个,从而在训练模型时起到正则化的作用,并可以用来应对过拟合。在测试模型时,我们为了拿到更加确定性的结果,一般不使用丢弃法。

二、梯度消失,梯度爆炸

当神经网络的层数较多时,模型的数值稳定性容易变差。
协概念偏移、标签偏移、概念偏移

三、循环神经网络进阶

RNN存在的问题:梯度较容易出现衰减或爆炸(BPTT)
⻔控循环神经⽹络:捕捉时间序列中时间步距离较⼤的依赖关系

GRU:
重置⻔有助于捕捉时间序列⾥短期的依赖关系;
更新⻔有助于捕捉时间序列⾥⻓期的依赖关系。
LSTM:
长短期记忆long short-term memory :
遗忘门:控制上一时间步的记忆细胞 输入门:控制当前时间步的输入
输出门:控制从记忆细胞到隐藏状态
记忆细胞:⼀种特殊的隐藏状态的信息的流动
深度循环神经网络
双向循环神经网络

四、机器翻译及相关技术

机器翻译(MT):将一段文本从一种语言自动翻译为另一种语言,用神经网络解决这个问题通常称为神经机器翻译(NMT)。 主要特征:输出是单词序列而不是单个单词。 输出序列的长度可能与源序列的长度不同。
数据预处理:将数据集清洗、转化为神经网络的输入minbatch
分词:字符串—单词组成的列表
建立词典:单词组成的列表—单词id组成的列表
载入数据
Encoder-Decoder:
encoder:输入到隐藏状态
decoder:隐藏状态到输出
Sequence to Sequence模型
Beam Search
维特比算法:选择整体分数最高的句子(搜索空间太大) 集束搜索

五、注意力机制与Seq2seq模型

注意力机制
在seq2seq模型中,解码器只能隐式地从编码器的最终状态中选择相应的信息。然而,注意力机制可以将这种选择过程显式地建模。
Attention 是一种通用的带权池化方法,输入由两部分构成:询问(query)和键值对(key-value pairs)。𝐤𝑖∈ℝ𝑑𝑘,𝐯𝑖∈ℝ𝑑𝑣. Query 𝐪∈ℝ𝑑𝑞 , attention layer得到输出与value的维度一致 𝐨∈ℝ𝑑𝑣. 对于一个query来说,attention layer 会与每一个key计算注意力分数并进行权重的归一化,输出的向量o则是value的加权求和,而每个key计算的权重与value一一对应。不同的attetion layer的区别在于score函数的选择。
点积注意力
The dot product 假设query和keys有相同的维度, 即 ∀i,𝐪,𝐤𝑖∈ℝ𝑑. 通过计算query和key转置的乘积来计算attention score,通常还会除去 d 减少计算出来的score对维度𝑑的依赖性。
多层感知机注意力
注意力层显式地选择相关的信息。注意层的内存由键-值对组成,因此它的输出接近于键类似于查询的值。

六、Transformer

CNNs 易于并行化,却不适合捕捉变长序列内的依赖关系。
RNNs 适合捕捉长距离变长序列的依赖,但是却难以实现并行化处理序列。
为了整合CNN和RNN的优势,该模型利用attention机制实现了并行化捕捉序列依赖,并且同时处理序列的每个位置的tokens,上述优势使得Transformer模型在性能优异的同时大大减少了训练时间。
多头注意力层:
自注意力模型是一个正规的注意力模型,序列的每一个元素对应的key,value,query是完全一致的。与循环神经网络相比,自注意力对每个元素输出的计算是并行的,所以我们可以高效的实现这个模块。
基于位置的前馈网络:
Transformer 模块另一个非常重要的部分就是基于位置的前馈网络(FFN),它接受一个形状为(batch_size,seq_length, feature_size)的三维张量。Position-wise FFN由两个全连接层组成,他们作用在最后一维上。因为序列的每个位置的状态都会被单独地更新,所以我们称他为position-wise,这等效于一个1x1的卷积。

七、卷积神经网络

二维互相关运算:二维互相关(cross-correlation)运算的输入是一个二维输入数组和一个二维核(kernel)数组,输出也是一个二维数组,其中核数组通常称为卷积核或过滤器(filter)。
二维卷积层:二维卷积层将输入和卷积核做互相关运算,并加上一个标量偏置来得到输出。卷积层的模型参数包括卷积核和标量偏置。
填充和步幅:我们介绍卷积层的两个超参数,即填充和步幅,它们可以对给定形状的输入和卷积核改变输出形状。
多输入通道和多输出通道:之前的输入和输出都是二维数组,但真实数据的维度经常更高。例如,彩色图像在高和宽2个维度外还有RGB(红、绿、蓝)3个颜色通道。假设彩色图像的高和宽分别是h和w(像素),那么它可以表示为一个3×h×w的多维数组,我们将大小为3的这一维称为通道(channel)维。
二维卷积层经常用于处理图像,与此前的全连接层相比,它主要有两个优势:一是全连接层把图像展平成一个向量,在输入图像上相邻的元素可能因为展平操作不再相邻,网络难以捕捉局部信息。而卷积层的设计,天然地具有提取局部信息的能力。二是卷积层的参数量更少。不考虑偏置的情况下,一个形状为(ci,co,h,w)的卷积核的参数量是ci×co×h×w,与输入图像的宽高无关。假如一个卷积层的输入和输出形状分别是(c1,h1,w1)和(c2,h2,w2),如果要用全连接层进行连接,参数数量就是c1×c2×h1×w1×h2×w2。使用卷积层可以以较少的参数数量来处理更大的图像。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值