Almost Prime Numbers UVA - 10539 (形式一定要统一,不要总想着,都是完美契合,可以浪费一点的)

本文介绍了一种高效的素数筛算法,用于生成大量素数,并通过快速幂算法检查特定范围内素数的平方是否在指定区间内。该算法首先初始化一个布尔型数组,标记所有非素数,然后使用快速幂算法进行高效计算。适用于需要处理大规模素数和指数运算的场景。
摘要由CSDN通过智能技术生成

#include<bits/stdc++.h>
using namespace std;

#define rep(i,a,b) for(int i=a;i<b;i++)
#define per(i,a,b) for(int i=b-1;i>=a;i--)

const int maxn=1e6+10;
typedef long long ll;

bool pri[maxn];
int prime[maxn];
int cnt=0;
void init(){
	rep(i,2,maxn){
		if(!pri[i]){
			prime[cnt++]=i;
			for(ll j=1ll*i*i;j<maxn;j+=i){
				pri[j]=1;
			}
		}
	}
}
/*
形式一定要规整,要不然,缝隙太大,容易遗漏很多条件
*/

ll check(int id,int n){
    ll ans=1,base=1ll*prime[id];
    while(n){
        if(n&1)ans*=1ll*base;
        n>>=1;
        base*=base;
    }
    return ans;
}

int getpos(int n){
    int l=0,r=cnt-1,ans=0,mid;
    while(l<=r){
        mid=(l+r)>>1;
        if(prime[mid]>n)
            r=mid-1;
        else{
            ans=mid;
            l=mid+1;
        }
    }
    return ans;
}

int main(){
	init();
    int T;
    scanf("%d",&T);
    while(T--){
        ll l,r;
        scanf("%lld %lld",&l,&r);
        int sr=sqrt(r+0.5);
        int pos=getpos(sr);
        int ans=0;
        rep(i,0,pos+1){
            ll tmp=1ll*prime[i];
            tmp*=tmp;
            for(;;){
                if(tmp>r)break;
                if(tmp>=l)ans++;
                tmp*=1ll*prime[i];
            }
        }
        printf("%d\n",ans);
    }
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值