思路:
1.若在数组中查到存在元素target,则返回当前位置;
2.若遍历到数组的元素大于target,则可认为数组中不存在元素target,那么若需要插入元素target,则需要插入到第一个大于target的元素的位置;
3.若遍历完数组,前两种情况都不满足,则可以认为数组中的所有元素都小于target,则target需要插入到数组最后。
class Solution {
public:
int searchInsert(vector<int>& nums, int target) {
for(int i=0; i<nums.size(); i++){
if(nums[i]==target){
return i;
}
if(nums[i]>target){
return i;
}
}
return nums.size(); }
};
时间复杂度:O(n)
空间复杂度:O(1)
方法二:
思路:采用二分的方法,这样时间复杂度会降低为O(logn)
class Solution {
public:
int searchInsert(vector<int>& nums, int target) {
int low=0,high=nums.size()-1;
while(low<=high){
int mid=(low+high)/2;
if(nums[mid]<target){
low=mid+1;
}else{
high=mid-1;
}
}
return low;
}
};
时间复杂度:O(logn)
空间复杂度:O(1)