数塔是动态规划的一道经典题
认识数塔前,先认识一下动态规划,动态规划不是一种特定的算法,而是一种具有较强的技巧性的手段,或者说是思想,但所有动态规划的题离不开两个核心:
1.状态
2.状态转移方程
当我们抓住这两个核心,我们的问题就能解决一大半!
—————————————————————————————————————
题目:
图片上便是一个数塔,现在要解决的问题是,从数塔顶层到底层,沿途将权重(即数值)相加和最大是多少?
分析:
首先再回想一遍动态规划的两个核心。
状态分析:我们会发现,当在每个节点都会做一个选择,(例如:在1时,是选择左还是选择右)
而选择了左或者右的时候又继续会有选择,我们此时马上就会想到递归(见a)
状态转移方程分析:题目要求最大的走法,所以我们可以初步得出一个方程雏形
a[选择后的结果]=b[节点]+max(a[左],a[右])
现在就需要一点点技巧性了,如何将方程雏形改成真正的状态转移方程
此处我们给出一个二维数组的处理办法,如图所示:
即可得出状态转移方程:
a[i,j]=b[i,j]+max(a[i+1,j],a[i+1,j+1])
理解了题目的状态,得出状态转移方程后,便要考虑计算的问题了
- a
-递归计算
!!注意边界处理,递归没有什么要讲的,直入代码
int dp(int i,int j)
{
if(i<=n)
return b[i,j]+max(dp(i+1,j),dp(i+1,j+1))
if(i>n)
return 0;
}

本文介绍了动态规划中的数塔问题,通过分析状态和状态转移方程来解决问题。讨论了递归、递推计算以及记忆化搜索三种解题方法,并强调了边界处理和效率优化的重要性。
最低0.47元/天 解锁文章
588

被折叠的 条评论
为什么被折叠?



