5分钟看懂反向传播算法(Backpropogation) |李宏毅机器学习【7】

本文介绍了深度学习中的反向传播算法,包括梯度下降的概念和神经网络中的应用。通过链式求导法则,详细阐述了前向传播和反向传播的过程,解释了如何递归地计算损失函数对所有参数的偏导数,直至达到输出层。通过实例和图表,帮助读者在5分钟内理解这一关键算法。
摘要由CSDN通过智能技术生成

当我们在谈论深度学习的“学习过程”的时候,我们在谈论什么?

对,在谈论梯度下降(Gradient Descent)

如果你还不知道什么是梯度下降,可以看看之前的梯度下降(Gradient Descent)的技巧和原理 https://blog.csdn.net/qq_36459893/article/details/82290553

 

下面是梯度下降的一般过程。由于神经网络独特的结构,所以对它做梯度下降有一丢丢复杂,需要引入一个技术:反向传播算法(Backpropogation)

在进入正题前,先复习一下微积分的链式求导法则。

梯度下降的关键是求梯度,简单来说就是求损失函数(Loss function)对所有参数求偏导组成的向量。

求L对w的偏导,也就是求每一项C对w的偏导。

\frac{\partial C}{\partial w}可以分解为两步

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值