Logistic回归代价函数的梯度下降公式数学推导

Logistic回归代价函数的梯度下降公式推导过程

Logistic回归代价函数梯度下降公式数学推导过程

因为最近在学习吴恩达的机器学习,这只是个人顺手保存一下自己认为比较重要的数学推导公式,之后也会继续保存之前未保存的一些算法的数学推导过程。

数学推导过程如下

J(θ)是Logistic回归算法的代价函数在这里插入图片描述
在这里插入图片描述
以上就是代价函数的求导过程,只是自己的一个笔记,不喜勿喷,谢谢。

  • 9
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
好的,我来简单介绍一下 logistic 回归的原理推导。 Logistic 回归是一种分类算法,它的目标是根据输入特征预测样本属于哪个类别。在二分类问题中,我们通常将样本分为正类和负类两种情况。Logistic 回归的核心思想是通过一个 Sigmoid 函数将输入特征映射到 0 到 1 的概率值,然后根据概率值进行分类。 具体来说,我们假设有 $m$ 个样本,每个样本有 $n$ 个特征,我们用 $x^{(i)}$ 表示第 $i$ 个样本的特征向量,用 $y^{(i)}$ 表示第 $i$ 个样本的标签(0 或 1)。我们的目标是学习一个函数 $h_{\theta}(x)$,使得对于任意输入特征 $x$,$h_{\theta}(x)$ 都能够预测出该样本属于正类的概率。 我们可以使用逻辑回归模型来实现这个目标。逻辑回归模型的形式如下: $$h_{\theta}(x) = g(\theta^Tx) = \frac{1}{1+e^{-\theta^Tx}}$$ 其中,$\theta$ 是模型参数,$g(z)$ 是 Sigmoid 函数,其定义为: $$g(z) = \frac{1}{1+e^{-z}}$$ 我们的目标是最大化似然函数,即: $$L(\theta) = \prod_{i=1}^m h_{\theta}(x^{(i)})^{y^{(i)}}(1-h_{\theta}(x^{(i)}))^{1-y^{(i)}}$$ 为了方便计算,我们通常使用对数似然函数: $$l(\theta) = \log L(\theta) = \sum_{i=1}^m y^{(i)}\log h_{\theta}(x^{(i)}) + (1-y^{(i)})\log(1-h_{\theta}(x^{(i)}))$$ 我们的目标是最大化对数似然函数,即: $$\max_{\theta} l(\theta)$$ 我们可以使用梯度上升算法来求解最优参数 $\theta$。具体来说,我们需要计算对数似然函数的梯度: $$\frac{\partial l(\theta)}{\partial \theta_j} = \sum_{i=1}^m (h_{\theta}(x^{(i)})-y^{(i)})x_j^{(i)}$$ 然后根据梯度上升算法的更新公式更新参数 $\theta$: $$\theta_j := \theta_j + \alpha \frac{\partial l(\theta)}{\partial \theta_j}$$ 其中,$\alpha$ 是学习率。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值