题目:
假设支付宝红包口令支持 1 到 6 位的数字组合,即'0'、'1'、'003'和'999999'都是合法的红包口令,那么总共可以有多少个合法的红包口令______
A、999999
B、1000000
C、1010100
D、1010101
E、1111110
F、1111111
分析:这道题是不是有点简单了些许还是我理解的深度不太对
思路很简单,支付口令有1到6位的数字组合,那么就可以分类讨论
1、当口令长度为1位的时候,一共有10种:0-9
2、当口令长度为2位的时候,一共有100种:00-99
3、当口令长度为3位的时候,一共有1000种:000-999
4、当口令长度为4位的时候,一共有10000种:0000-9999
5、当口令长度为5位的时候,一共有100000种:00000-99999
6、当口令长度为6位的时候,一共有1000000种:000000-999999
因此综上,口令支付一共有:
1111110种本题选E选项
代码就是一个简单的for循环级数求和
E:\Python27\python.exe D:/python/python算法/b.py
1111110
Process finished with exit code 0
假设支付宝红包口令支持 1 到 6 位的数字组合,即'0'、'1'、'003'和'999999'都是合法的红包口令,那么总共可以有多少个合法的红包口令______
A、999999
B、1000000
C、1010100
D、1010101
E、1111110
F、1111111
分析:这道题是不是有点简单了些许还是我理解的深度不太对
思路很简单,支付口令有1到6位的数字组合,那么就可以分类讨论
1、当口令长度为1位的时候,一共有10种:0-9
2、当口令长度为2位的时候,一共有100种:00-99
3、当口令长度为3位的时候,一共有1000种:000-999
4、当口令长度为4位的时候,一共有10000种:0000-9999
5、当口令长度为5位的时候,一共有100000种:00000-99999
6、当口令长度为6位的时候,一共有1000000种:000000-999999
因此综上,口令支付一共有:
1111110种本题选E选项
代码就是一个简单的for循环级数求和
#-*-coding:UTF-8-*- sum = 0 a = 1 for i in range(6): a = a *10 sum += a print sum
E:\Python27\python.exe D:/python/python算法/b.py
1111110
Process finished with exit code 0