- 博客(635)
- 资源 (3)
- 问答 (1)
- 收藏
- 关注
原创 【DeepSeek 多模态探索】从文本到图像与语音:解锁 DeepSeek 的多模态 AI 潜力
随着多模态 AI 技术的快速发展,开发者对 DeepSeek 是否能够支持图像、音频等多模态任务充满期待。本文将探讨 DeepSeek 在多模态方向上的潜力,分析其是否能够集成语音识别、图像生成等能力,并通过代码示例展示如何实现多模态任务的初步集成。DeepSeek 作为一个强大的文本生成模型,具备扩展至多模态任务的潜力。通过与其他模型的结合,它可以实现图像生成、语音识别等复杂任务。本文通过代码示例展示了如何将 DeepSeek 与 Stable Diffusion 结合,为开发者提供了多模态集成的思路。
2025-02-12 14:53:02
852
原创 LeetCode - #204 计数质数
我们社区陆续会将顾毅(Netflix 增长黑客,《iOS 面试之道》作者,ACE 职业健身教练。)的 Swift 算法题题解整理为文字版以方便大家学习与阅读。LeetCode 算法到目前我们已经更新到 203 期,我们会保持更新时间和进度(周一、周三、周五早上 9:00 发布),每期的内容不多,我们希望大家可以在上班路上阅读,长久积累会有很大提升。不积跬步,无以至千里;不积小流,无以成江海,Swift社区 伴你前行。如果大家有建议和意见欢迎在文末留言,我们会尽力满足大家的需求。难度水平:中等。
2025-02-12 11:51:01
786
原创 【DeepSeek 私有化】数据安全无忧:手把手教你部署 DeepSeek 并构建私有 API
本文旨在指导企业和个人开发者如何在私有服务器上部署 DeepSeek,并通过 Flask 或 FastAPI 封装 API,以避免云端依赖并确保数据安全。我们将详细介绍部署步骤,并提供完整的代码示例。通过本文的介绍,你应该能够在私有服务器上成功部署 DeepSeek 模型,并使用 Flask 或 FastAPI 封装 API。这种方法不仅提高了数据安全性,还减少了对云服务的依赖。未来,我们可以探索更多的优化策略,如模型压缩、分布式部署等,以进一步提升私有部署的性能和可扩展性。
2025-02-11 21:05:57
753
原创 LeetCode - #203 移除链表元素
我们社区陆续会将顾毅(Netflix 增长黑客,《iOS 面试之道》作者,ACE 职业健身教练。)的 Swift 算法题题解整理为文字版以方便大家学习与阅读。LeetCode 算法到目前我们已经更新到 202 期,我们会保持更新时间和进度(周一、周三、周五早上 9:00 发布),每期的内容不多,我们希望大家可以在上班路上阅读,长久积累会有很大提升。不积跬步,无以至千里;不积小流,无以成江海,Swift社区 伴你前行。如果大家有建议和意见欢迎在文末留言,我们会尽力满足大家的需求。难度水平:简单。
2025-02-11 17:24:38
619
原创 【DeepSeek】从文本摘要到对话生成:DeepSeek 在 NLP 任务中的实战指南
DeepSeek 作为一款强大的自然语言处理(NLP)模型,能够在文本摘要、情感分析、对话生成等任务中提供出色的表现。本文将详细介绍 DeepSeek 在这些任务中的具体应用,并提供可运行的示例代码,帮助开发者更好地理解如何将其应用于实际业务场景。文本摘要任务旨在从长文本中提取关键信息,以简要的形式呈现核心内容。本文介绍了 DeepSeek 在文本摘要、情感分析和对话生成中的应用,并提供了相应的代码示例。希望这些示例能帮助开发者更好地理解 DeepSeek 的实际应用。
2025-02-10 19:21:07
1108
原创 LeetCode - #202 快乐数
我们社区陆续会将顾毅(Netflix 增长黑客,《iOS 面试之道》作者,ACE 职业健身教练。)的 Swift 算法题题解整理为文字版以方便大家学习与阅读。LeetCode 算法到目前我们已经更新到 200 期,我们会保持更新时间和进度(周一、周三、周五早上 9:00 发布),每期的内容不多,我们希望大家可以在上班路上阅读,长久积累会有很大提升。不积跬步,无以至千里;不积小流,无以成江海,Swift社区 伴你前行。如果大家有建议和意见欢迎在文末留言,我们会尽力满足大家的需求。难度水平:简单。
2025-02-10 18:58:41
576
原创 LeetCode - #201 数字范围按位与
本文将介绍如何用位运算(Bitwise Operation)解决“区间按位与”(Bitwise AND of Numbers Range)问题。我们将提供 Swift 代码实现,并对其进行详细分析,包括时间复杂度、空间复杂度、代码逻辑解析,以及可运行的测试示例。解法通过右移找到公共前缀,然后左移恢复结果,得到最终的按位与。时间复杂度O(log N),空间复杂度O(1)。适用场景适用于按位运算优化问题,如网络地址计算、数据压缩等。
2025-02-09 09:00:00
905
原创 深度揭秘:DeepSeek模型技术精髓与应用边界探索
DeepSeek 作为一种前沿的大语言模型(LLM),以其独特的技术架构和创新点,在自然语言处理(NLP)任务中表现出色。本文旨在详细介绍 DeepSeek 的基础架构、训练方法,以及其在 NLP 任务中的应用表现,并提供可运行的示例 Demo 代码模块,以帮助开发者更好地理解和应用该模型。DeepSeek作为一种前沿的大语言模型,以其独特的技术架构和创新点在自然语言处理领域取得了显著成就。
2025-02-09 09:00:00
1375
原创 ArgoCD实战指南:GitOps驱动下的Kubernetes自动化部署与Helm/Kustomize集成
ArgoCD 是一种 GitOps 持续交付工具,专为 Kubernetes 设计。它能够自动同步 Git 仓库中的声明性配置,并将其应用到 Kubernetes 集群中。本文将介绍ArgoCD 的架构、安装步骤,以及如何结合Helm 和 Kustomize进行 Kubernetes 自动化部署。ArgoCD 是强大的 GitOps 解决方案,可提高 Kubernetes 资源管理效率。结合 Helm 和 Kustomize,可以实现更灵活的自动化部署。需要正确配置权限管理,确保安全性。未来展望✅。
2025-02-08 17:50:38
856
原创 深度探索 DeepSeek 微调:LoRA 与全参数微调实战指南
DeepSeek 作为强大的大模型,提供了优质的基础能力,但在某些特定任务上,直接使用预训练模型可能无法满足需求。本篇文章将介绍LoRA全参数微调等微调策略,并提供详细的代码示例,帮助开发者高效定制 DeepSeek 以适应特定任务。LoRA 适用于计算资源有限的场景,通过低秩适配微调模型关键层,减少训练开销。全参数微调适用于大规模训练任务,但计算资源消耗大,适合计算能力强的环境。结合 DeepSpeed、FSDP 可优化全参数微调的训练效率。未来展望。
2025-02-08 09:00:00
1748
1
原创 Jenkins 企业级 CI/CD 实践:安装、配置与 Kubernetes & Docker 集成
Jenkins 是最流行的开源 CI/CD 工具之一,广泛用于自动化软件构建、测试和部署。然而,由于其配置复杂插件众多,许多企业在落地 Jenkins 时面临挑战。本指南将详细讲解Jenkins 的安装、Pipeline 配置、Agent 管理、插件扩展,并演示如何与Kubernetes、Docker 集成,构建高效的自动化部署流程。Jenkins 是一款强大的 CI/CD 工具,但在企业落地时面临安装、配置和集成的挑战。本文详细介绍了 Jenkins 的。
2025-02-08 09:00:00
528
原创 【GitLab CI/CD 实践】从 0 到 1 搭建高效自动化部署流程
GitLab CI/CD 是 GitLab 内置的持续集成和持续部署(CI/CD)工具,它可以帮助开发团队自动化代码测试、构建和部署。本指南将介绍如何使用 GitLab CI/CD 搭建完整的自动化部署流程,包括配置文件的编写、Stages、Jobs、Artifacts 以及 Runner 的使用。GitLab CI/CD 提供了一种高效的自动化部署方式,能够帮助团队提高开发效率和代码质量。本文介绍了 GitLab CI/CD 的基本概念、配置、Runner 的使用以及 Artifacts 处理方式。
2025-02-07 14:34:20
1202
原创 LeetCode - #200 岛屿数量(Top 100)
本题为 LeetCode 前 100 高频题我们社区陆续会将顾毅(Netflix 增长黑客,《iOS 面试之道》作者,ACE 职业健身教练。)的 Swift 算法题题解整理为文字版以方便大家学习与阅读。LeetCode 算法到目前我们已经更新到 199 期,我们会保持更新时间和进度(周一、周三、周五早上 9:00 发布),每期的内容不多,我们希望大家可以在上班路上阅读,长久积累会有很大提升。不积跬步,无以至千里;不积小流,无以成江海,Swift社区 伴你前行。
2025-02-07 14:09:32
768
原创 【机器学习入门】从基础概念到实践应用,揭开智能算法的神秘面纱
机器学习(Machine Learning)是一门致力于让计算机具备自学习能力的学科。本文将介绍机器学习的定义、发展历程、主要分类(监督学习、无监督学习、强化学习)及其核心思想。并通过一个简单的 Python 代码示例,帮助读者理解其实际应用。机器学习是一种使计算机能够从数据中自动学习并改进自身能力的技术。其核心目标是通过数据训练模型,使其在未知数据上能够做出准确的预测或决策。本文介绍了机器学习的定义、发展历程及主要分类,并通过代码示例展示了监督学习的基本概念。
2025-02-06 17:03:21
1108
原创 LeetCode - #199 二叉树的右视图
我们社区陆续会将顾毅(Netflix 增长黑客,《iOS 面试之道》作者,ACE 职业健身教练。)的 Swift 算法题题解整理为文字版以方便大家学习与阅读。LeetCode 算法到目前我们已经更新到 198 期,我们会保持更新时间和进度(周一、周三、周五早上 9:00 发布),每期的内容不多,我们希望大家可以在上班路上阅读,长久积累会有很大提升。不积跬步,无以至千里;不积小流,无以成江海,Swift社区 伴你前行。如果大家有建议和意见欢迎在文末留言,我们会尽力满足大家的需求。难度水平:中等。
2025-02-06 11:33:02
862
原创 LeetCode - #198 打家劫舍
本文将介绍如何用动态规划(Dynamic Programming, DP)解决经典的“打家劫舍”(House Robber)问题。我们将提供 Swift 代码实现,并对其进行详细分析,包括时间复杂度、空间复杂度、代码逻辑解析,以及可运行的测试示例。解法动态规划,状态优化:用prev1和prev2变量代替数组,节省O(n)的空间。时间复杂度O(n),因为只遍历了一次数组。空间复杂度标准解法O(n)优化解法O(1)适用场景适用于序列优化问题,比如游戏关卡最优选择、投资最优策略等。
2025-02-05 21:02:02
705
原创 【AI 语音】实时语音交互优化全解析:从 RTC 技术到双讲处理
随着人工智能(AI)和实时通信(RTC)技术的快速发展,实时语音交互成为智能助手、客服机器人等应用的重要组成部分。然而,语音交互易受网络延迟、环境噪声和双讲(Double-Talk)现象的影响,影响用户体验。本文将探讨如何优化 RTC 技术,提高语音交互的稳定性,并提供可运行的示例代码,以帮助开发者快速实现高质量的实时语音交互。本文介绍了 AI 在实时语音交互中的应用,分析了 RTC 技术的优化方法,并提出了解决双讲现象的 AI 方案。通过示例代码,展示了如何集成语音识别与合成,实现高质量语音交互。
2025-02-05 20:54:16
1048
原创 【机器学习篇】K-Means 算法详解:从理论到实践的全面解析
K-Means 是一种广泛应用的聚类算法,用于将数据集分组为 K 个簇。由于其简单易懂和高效的计算性能,K-Means 被广泛应用于各种数据分析任务中。本文将详细讲解 K-Means 的基本算法原理,使用步骤,并通过代码示例展示其在 Python 中的实现,帮助读者更好地理解和应用该算法。K-Means 算法是一个简单且高效的聚类方法,适用于各种数据分析任务。通过本文的讲解与示例,读者应该能够掌握 K-Means 的基本原理,并通过 Python 实现聚类分析。
2025-02-03 23:49:44
1194
1
原创 LeetCode - #197 Swift 实现找出温度更高的日期
本文将介绍如何使用 Swift 解决一个常见的数据库问题:找出与前一天(昨天)相比温度更高的所有日期的id。我们将通过完整的 Swift 代码实现该功能,并分析时间复杂度和空间复杂度,提供可运行的测试示例以及性能优化建议。解法的效率本解法简单高效,时间复杂度为O(n),适用于处理不太大的数据集。适用场景适用于天气数据分析、日常数据记录等需要进行日期间比较的场景。改进方向如果数据量较大,可以考虑使用数据库来进行类似的查询,避免将所有数据加载到内存中进行处理。
2025-02-03 23:41:08
908
原创 RAG技术:通过向量检索增强模型理解与生成能力
本文介绍了RAG(检索增强生成)技术的原理与应用,特别是如何通过向量检索系统增强生成模型对外部知识的理解和生成能力。针对大模型缺乏实时知识和生成内容易出错的问题,本文提出了一种结合向量检索与生成模型的方法,并提供了可运行的示例代码模块。本文介绍了RAG技术的原理与应用,特别是如何通过向量检索系统增强生成模型对外部知识的理解和生成能力。通过搭建向量检索系统与生成模型相结合的应用,我们能够有效解决大模型缺乏实时知识和生成内容易出错的问题。未来,随着人工智能技术的不断发展,RAG技术将在更多领域发挥重要作用。
2025-01-28 16:05:41
1226
原创 LeetCode - #196 删除重复的电子邮件并保留最小 ID 的唯一电子邮件
在数据库操作中,去除重复数据是常见的任务之一。本篇文章将使用 Swift 语言模拟 SQL 操作,解决删除重复电子邮件并保留最小id的唯一电子邮件的问题。通过详细的代码分析和示例展示,帮助读者理解如何实现该功能。Swift 的实现:通过字典存储电子邮件的最小id,高效去除重复邮件并保留最小id的记录。适用场景:适用于需要去重并保留唯一记录的场景,例如用户数据库的去重操作。时间与空间效率:时间复杂度为O(n),空间复杂度为O(n + m),对于较大的数据集也能高效处理。
2025-01-28 15:58:06
1274
原创 深度学习探索:ChatGPT数据分析精髓 & 梯度下降优化方法深度剖析
本文旨在帮助开发者在TensorFlow与PyTorch之间做出明智的选择,并通过实战示例代码加深理解。TensorFlow和PyTorch作为两大主流深度学习框架,各有千秋。本文将对比它们的核心特点,并通过实际的小项目示例代码展示如何在两者中进行选择和应用。TensorFlow和PyTorch各有优势,开发者应根据自身需求和应用场景选择合适的框架。TensorFlow适合需要高性能和可扩展性的生产环境,而PyTorch则更适合实验和研究,以及快速原型设计。
2025-01-27 19:10:48
1744
1
原创 LeetCode - #195 Swift 实现打印文件中的第十行
在文件处理和文本处理的常见问题中,提取特定行是基础且实用的操作之一。本文将介绍如何使用 Swift 实现从文本文件中提取并打印第十行的功能,并提供多种实现解法。我们将逐步分析每种方法的优缺点,并通过具体的代码示例展示其实际效果。解法 1:适用于小文件,简单易懂,但对大文件不够高效。解法 2:适用于大文件,逐行处理,内存占用小,灵活性强。解法 3:适用于 Unix 环境中的简单文件操作,非常简洁,但不适用于所有平台。
2025-01-27 18:48:11
1249
原创 【前沿聚焦】机器学习的未来版图:从自动化到隐私保护的技术突破
本文聚焦机器学习领域的前沿技术趋势,包括自动化机器学习(AutoML)、多模态学习和联邦学习等热门方向。文章将详细解析这些技术的基本原理、应用场景及潜在突破点,并通过可运行的代码示例进行实践,帮助开发者理解这些技术并规划未来学习路径。AutoML 是一种旨在自动化机器学习模型开发流程的技术。其核心目标是减少人工干预,从而降低技术门槛,使非专业开发者也能轻松使用机器学习。多模态学习旨在处理包含多种数据类型(如文本、图像、音频)的任务。其核心挑战在于如何融合和利用不同模态的信息。
2025-01-25 23:51:04
1583
1
原创 LeetCode - #194 Swift 实现文件内容转置
文件内容的转置是数据处理中的基础操作之一,特别是在表格数据处理中。本文将以一个实际问题为例,展示如何用 Swift 实现文件内容的转置功能。通过详细的代码解析和测试结果,帮助读者掌握这一常用技能。Swift 的优势丰富的字符串处理功能和数组操作方法使得实现文件转置更为简洁和高效。错误处理机制确保了文件读取的可靠性。代码优化方向如果文件内容特别大,可以通过逐行读取并直接处理,减少内存占用。应用场景数据表格转置:常用于 CSV 文件的处理。数据格式转换:适用于各种文件格式之间的快速转化。
2025-01-25 23:20:10
939
原创 验证电话号码格式的 Bash 和 Swift 实现详解
电话号码格式验证是实际应用中非常常见的需求。本文将介绍如何使用 Bash 脚本和 Swift 程序从文本文件中筛选出符合格式要求的电话号码。除了详细的代码解析外,还提供可运行的示例代码、测试结果,以及对算法的时间与空间复杂度的分析。Bash 优势简洁明了,适用于快速验证任务。直接依赖系统工具,无需额外库支持。Swift 优势代码可扩展性强,适合复杂场景。支持更精细的错误处理与结果格式化。
2025-01-24 22:17:06
820
原创 苹果增加投资欲解除 iPhone16 封杀令 | Swift 周报 issue 66
本期是 Swift 编辑组自主整理周报的第六十六期,每个模块已初步成型。各位读者如果有好的提议,欢迎在文末留言。Swift 周报在GitHub 开源,欢迎提交 issue,投稿或推荐内容。目前计划每两周周一发布,欢迎志同道合的朋友一起加入周报整理。若你决定灿烂,山无遮,海无拦。Swift社区与你一起,用黑白两色的眼睛,去观察五彩斑斓的世界!👊👊👊周报精选新闻和社区:苹果 1 亿美元投资还不能解除 iPhone16 封杀令?提案:SE-0453: 向量,固定大小的数组提案正在审查。
2025-01-24 22:12:17
795
原创 【分布式日志篇】从工具选型到实战部署:全面解析日志采集与管理路径
在分布式系统中,多个节点同时生成的海量日志需要集中管理与分析,以提高问题定位和系统运维的效率。本文将介绍分布式日志采集与管理的核心概念,深入探讨 Fluentd 和 Logstash 等工具的具体应用实践,并通过示例代码展示如何构建高效的日志平台。本文详细介绍了分布式日志采集与管理的核心挑战与工具实践,通过 Fluentd 和 Logstash 的配置与代码示例,展示了如何搭建高效的日志平台。无论是轻量级需求还是复杂场景,这些工具都能有效提升日志管理能力。未来展望引入 AI 和机器学习进行日志异常检测。
2025-01-23 17:33:49
1785
原创 统计文本文件中单词频率的 Swift 与 Bash 实现详解
本文将探讨如何统计文本文件中每个单词的出现频率,具体实现包括 Bash 脚本的经典解法和 Swift 的高效实现。我们不仅会提供完整的代码,还将逐步拆解逻辑,帮助读者理解实现细节。同时,文章会分析时间与空间复杂度,并附上运行示例及结果。Bash 解法: 简洁高效,适用于快速处理任务。Swift 解法: 代码结构清晰,适合需要更多功能扩展的场景。
2025-01-23 16:29:11
1470
原创 【AI日志分析】基于机器学习的异常检测:告别传统规则的智能进阶
随着系统规模的扩大和复杂性增加,传统基于规则的日志分析方法难以识别隐藏的复杂异常模式。本文将介绍基于机器学习的日志异常检测技术,包括模型选择、特征工程及实现步骤。通过具体的代码示例与图表,展示如何高效检测异常日志,并提供应用场景与优化策略。本文探讨了基于机器学习的异常日志检测技术,覆盖了从数据预处理到模型选择和可视化的完整流程。通过示例代码,展示了如何在实践中快速实现异常检测,提高日志分析效率。未来展望深度学习在日志检测中的应用:如基于 Transformer 的异常检测模型。实时处理能力的提升。
2025-01-22 11:53:33
1428
原创 【算法篇】从汉明重量的基础理解到高效位运算优化详解
汉明重量是指一个数字的二进制表示中“1”的个数。本文将探讨如何用 Swift 编写高效函数来计算汉明重量。我们将展示代码实现、详细的分析以及优化方法,并通过示例验证其正确性和性能。使用位运算实现了高效的汉明重量计算。通过优化方案,可显著提升多次调用场景下的性能。本文提供的代码简单易懂,适合嵌入不同类型的系统中使用。未来展望深入研究硬件级优化(如使用 CPU 指令POPCNT应用汉明重量计算于更多实际场景,如网络通信、数据压缩。
2025-01-22 11:05:10
1031
原创 【多模态 AI】从跨模态学习到生成革命:文本、图像与音频的深度交融
多模态 AI 架构通过融合文本、图像、视频和音频等多种数据模态,展现了强大的跨模态学习与应用能力,广泛应用于智能助手、内容生成与搜索等领域。本文深入解析多模态 AI 的技术架构与核心融合机制,展示典型应用场景,并提供跨模态生成的示例代码,助力开发者更好地理解和构建多模态 AI 系统。本文分析了多模态 AI 的核心技术,包括跨模态表示学习、融合机制与典型应用案例。通过代码示例和技术框架解析,展示了构建多模态 AI 系统的路径和思路。未来展望统一大模型:进一步提升多模态联合处理与生成能力。实时处理。
2025-01-21 17:58:18
1213
原创 Swift 实现:颠倒 32 位无符号整数的二进制位
在本文中,我们将学习如何使用 Swift 解决 LeetCode 问题,反转 32 位无符号整数的二进制位。通过高效算法和进阶优化方法,实现快速、准确的结果输出。本文还提供了详细的代码分析、时间复杂度和空间复杂度的评估。使用位运算实现了高效的原地反转算法,没有额外的内存开销。提供了一个清晰易懂的实现方法,适合应用于实际工程。
2025-01-21 17:44:18
1058
原创 【ELK 实战篇】日志聚合与可视化全流程详解:从部署到洞察数据的高效指南
在现代分布式系统中,日志聚合与可视化分析已成为提升系统可观察性和运维效率的关键手段。本文将介绍如何利用 ELK Stack(Elasticsearch、Logstash、Kibana)实现日志的高效聚合与可视化,提供完整的部署流程和代码示例,帮助开发者快速构建功能强大的日志管理与分析平台。:一个分布式搜索引擎,用于存储和检索日志数据。Logstash:日志管道工具,可采集、解析并将日志数据传输至 Elasticsearch。Kibana:数据可视化工具,用于展示日志数据和创建交互式仪表板。
2025-01-20 19:08:14
1196
原创 LeetCode - #189 轮转数组
我们社区陆续会将顾毅(Netflix 增长黑客,《iOS 面试之道》作者,ACE 职业健身教练。)的 Swift 算法题题解整理为文字版以方便大家学习与阅读。LeetCode 算法到目前我们已经更新到 188 期,我们会保持更新时间和进度(周一、周三、周五早上 9:00 发布),每期的内容不多,我们希望大家可以在上班路上阅读,长久积累会有很大提升。不积跬步,无以至千里;不积小流,无以成江海,Swift社区 伴你前行。如果大家有建议和意见欢迎在文末留言,我们会尽力满足大家的需求。难度水平:中等。
2025-01-20 18:50:49
488
原创 AIGC - 深度洞察如何对大模型进行微调以满足特定需求
本文介绍了如何对大模型进行微调以满足特定需求,详细探讨了微调方法、轻量化策略以及性能权衡分析。通过具体的代码示例和配图,本文旨在为读者提供一套完整的大模型微调解决方案。本文详细介绍了如何对大模型进行微调以满足特定需求,包括微调方法、轻量化策略以及性能权衡分析。通过具体的代码示例和配图,本文为读者提供了一套完整的大模型微调解决方案。未来,随着AI技术的不断发展,大模型的轻量化设计与部署策略将成为重要趋势。通过不断优化微调方法和轻量化策略,我们可以期待大模型在更多应用场景中发挥更大的作用。
2025-01-18 23:39:03
806
原创 LeetCode - #187 Swift 实现重复的DNA序列
本文旨在解决一个关于DNA序列中重复子字符串的问题。给定一个DNA序列字符串,要求找出所有长度为10且出现不止一次的子字符串。文章将首先描述问题背景,然后提供Swift语言的解决方案,并详细分析代码、示例测试及结果,最后讨论时间复杂度和空间复杂度。本文介绍了一个关于DNA序列中重复子字符串的问题,并提供了Swift语言的解决方案。通过遍历字符串并使用哈希表统计子字符串的出现次数,我们可以高效地找出所有长度为10且出现不止一次的子字符串。
2025-01-18 22:33:23
1130
原创 【日志分析】从手动解析到智能检测:日志异常模式挖掘全解
本文探讨了如何结合日志分析工具和机器学习技术实现自动化日志异常模式检测。通过介绍相关技术背景、工具选择及应用场景,辅以完整的代码示例,指导开发者高效分析日志中的异常模式,提升系统运维效率与稳定性。本文展示了如何利用日志分析工具与机器学习技术实现异常检测。通过结合案例与代码示例,说明了模型选择与应用的关键点,帮助开发者高效解决日志分析中的痛点问题。探索深度学习在日志异常检测中的应用。提升日志与监控数据的联合分析能力。集成实时流处理与告警机制。
2025-01-17 19:53:59
1111
原创 反转字符串中的单词 II:Swift 实现与详解
本文针对LeetCode186题“反转字符串中的单词II”,探讨如何用Swift实现一个原地解法来反转字符数组中的单词顺序。通过详细的代码和分析,我们将学习如何优化代码逻辑并提高解法的效率。本题通过原地操作有效节省了空间。解法采用整体反转+单词反转的分治思想,逻辑清晰易于实现。适合在面试中展现数据结构和双指针的熟练运用。可以扩展到更复杂的字符串处理场景,例如多种分隔符。优化代码逻辑,提高可读性和鲁棒性。
2025-01-17 17:45:54
762
原创 AI Prompt 设计指南:从基础构建到高质量生成的全面解析
高质量的 Prompt 是提升 AI 模型输出质量的关键。本文深入探讨 Prompt 的基本组成、优化技巧及典型案例,结合实际应用场景提供可运行的示例代码,帮助用户解决 AI 输出不稳定和难以匹配需求的问题。Prompt 是用户与 AI 模型交互的输入内容。它可以是一个问题、任务描述或上下文信息,决定了模型的输出方向。明确性:问题清晰,避免模棱两可的表达。目标性:明确用户期望的输出类型或格式。可扩展性:支持上下文引导或任务分解。高质量 Prompt 的设计是生成式 AI 成功应用的基石。
2025-01-16 19:21:02
1893
FBYBankCardRecognition-iOS-master.zip
2020-05-28
FBYFaceRecognitionDemo_iOS-master.zip
2020-04-28
LeetCode - #3 最长未重复子字符串
2021-11-16
TA创建的收藏夹 TA关注的收藏夹
TA关注的人