传统推荐过时了?试试用大模型读懂用户每一次点击

网罗开发 (小红书、快手、视频号同名)

  大家好,我是 展菲,目前在上市企业从事人工智能项目研发管理工作,平时热衷于分享各种编程领域的软硬技能知识以及前沿技术,包括iOS、前端、Harmony OS、Java、Python等方向。在移动端开发、鸿蒙开发、物联网、嵌入式、云原生、开源等领域有深厚造诣。

图书作者:《ESP32-C3 物联网工程开发实战》
图书作者:《SwiftUI 入门,进阶与实战》
超级个体:COC上海社区主理人
特约讲师:大学讲师,谷歌亚马逊分享嘉宾
科技博主:华为HDE/HDG

我的博客内容涵盖广泛,主要分享技术教程、Bug解决方案、开发工具使用、前沿科技资讯、产品评测与使用体验。我特别关注云服务产品评测、AI 产品对比、开发板性能测试以及技术报告,同时也会提供产品优缺点分析、横向对比,并分享技术沙龙与行业大会的参会体验。我的目标是为读者提供有深度、有实用价值的技术洞察与分析。

展菲:您的前沿技术领航员
👋 大家好,我是展菲!
📱 全网搜索“展菲”,即可纵览我在各大平台的知识足迹。
📣 公众号“Swift社区”,每周定时推送干货满满的技术长文,从新兴框架的剖析到运维实战的复盘,助您技术进阶之路畅通无阻。
💬 微信端添加好友“fzhanfei”,与我直接交流,不管是项目瓶颈的求助,还是行业趋势的探讨,随时畅所欲言。
📅 最新动态:2025 年 3 月 17 日
快来加入技术社区,一起挖掘技术的无限潜能,携手迈向数字化新征程!


摘要

传统的推荐系统,依赖于协同过滤、矩阵分解或轻量级的深度学习模型,但在面对用户行为日益复杂、信息形式多样的今天,这些方法逐渐显得“力不从心”。尤其是对于用户意图的理解,常常浮于表面。而大模型(如 GPT、BERT、CLIP)的崛起,为我们带来了从“行为推荐”走向“理解推荐”的新机会。

本文将围绕“大模型驱动的个性化推荐”这一核心,系统剖析用户意图建模、多模态信息融合和下游推荐算法的落地实践,配合 Demo 代码与配图,帮助你从 0 到 1 搭建一个智能、灵活的推荐系统。

推荐系统到了该变的时候了

还记得你在某电商平台上点开了一双球鞋,然后整个首页全是鞋吗?这种“过度精准”的现象,其实暴露的是传统推荐系统的“狭隘视角”。

用户真正想要的,不仅仅是“买过的人还买了什么”,而是系统能理解“我现在需要什么、为什么需要、可能还会需要什么”。这就需要我们从行为表层走向意图深层,而大模型恰恰擅长这一点。

大模型推荐系统的核心能力

用户意图识别:理解“人”比理解“行为”更重要

以往我们依赖点击、浏览、收藏等离散行为标签。现在可以直接将用户自然语言反馈(搜索词、评论、问答)喂给语言模型,提取用户偏好。

思路:
利用 OpenAI GPT 或 HuggingFace 上的 BERT 类模型,将用户行为日志转为语义嵌入,作为用户画像的一部分。

from transformers import AutoTokenizer, AutoModel
import torch

tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
model = AutoModel.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")

def get_user_embedding(text):
    inputs = tokenizer(text, return_tensors="pt", truncation=True)
    with torch.no_grad():
        outputs = model(**inputs)
        embeddings = outputs.last_hidden_state.mean(dim=1)
    return embeddings

多模态融合:文本、图像、语音,统统理解

在内容推荐场景(如短视频、直播、电商图文),单一文本特征已经不足以准确刻画内容特征。我们需要图文音多模态一起处理。

解决方案:

  • 文本:使用 BERT 系列模型。

  • 图像:使用 CLIP、SAM、BLIP 等多模态预训练模型。

  • 音频:使用 Whisper 或其他语音模型提取语义。

示意图:

[ 用户点击记录 ]
     ↓
[ 文本 | 图片 | 音频 ]
     ↓  多模态模型
[ 语义嵌入向量 ]
     ↓
[ 推荐引擎 ]

推荐系统架构设计与融合策略

你可以基于向量检索(FAISS)、ANN 索引、召回 + 重排架构搭建端到端大模型推荐系统。

架构核心模块:

  1. 行为数据处理(Data ETL)

  2. 意图建模(语言模型 + 模态嵌入)

  3. 候选生成(Ann Search/Vector DB)

  4. 精排策略(加权融合 + 深度排序模型)

构建一个基于语义搜索的推荐器

以简化的文本向量推荐为例:

from sklearn.metrics.pairwise import cosine_similarity
import numpy as np

corpus = [
    "轻薄笔记本推荐",
    "机械键盘推荐",
    "适合远程办公的显示器",
    "拍视频的相机设备"
]

corpus_vecs = [get_user_embedding(text).numpy()[0] for text in corpus]

def recommend(query, corpus, corpus_vecs, topk=2):
    query_vec = get_user_embedding(query).numpy()
    scores = cosine_similarity(query_vec, np.array(corpus_vecs)).flatten()
    top_indices = scores.argsort()[::-1][:topk]
    return [(corpus[i], scores[i]) for i in top_indices]

# 示例调用
print(recommend("办公用的电脑", corpus, corpus_vecs))

输出结果为最相似的推荐项。

QA 环节

Q:多模态模型训练成本很高,初创项目适合吗?
A:可以选择 HuggingFace 的开源模型做 Finetune 或直接使用 CLIP、BLIP 的预训练向量。无需自己从零训练。

Q:怎么做到推荐结果实时响应?
A:向量检索部分推荐使用 FAISS + Redis缓存热向量,可做到毫秒级响应。

Q:如何评估模型推荐效果?
A:经典指标包括 precision@k、recall@k、NDCG。可以通过 A/B 测试比较传统算法与大模型版本的转化效果差异。

总结

大模型赋予推荐系统全新的思考方式:从“行为推荐”走向“理解推荐”,从“点击标签”转向“意图建模”,从“单模态”升级到“多模态”。虽然存在计算资源与成本门槛,但其带来的推荐质量提升、用户体验优化,是颠覆性的。

未来展望

我们看到,推荐不再是“列表排序”的游戏,而是“理解用户”的过程。未来,大模型推荐系统将在以下方向持续进化:

  • 实时意图建模(Streaming LLM)

  • 个性化知识图谱驱动推荐

  • LLM + Graph Embedding 融合结构推荐

  • 面向企业的推荐即服务(RecSys-as-a-Service)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

网罗开发

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值