LeetCode 450 - 删除二叉搜索树中的节点

2025博客之星年度评选已开启 10w+人浏览 1.1k人参与

在这里插入图片描述
在这里插入图片描述

摘要

在所有二叉搜索树(BST)的操作里,删除节点算是最容易让人写崩的一道题。

插入很好写,查找也没什么难度,但一到删除,就会遇到各种情况:

  • 要删的节点是叶子节点怎么办
  • 只有一个子节点怎么办
  • 左右子树都存在又该怎么办

而这道 LeetCode 450,几乎把 BST 删除能遇到的所有坑都覆盖到了。

这篇文章会一步一步拆解 BST 删除节点的完整思路,用「分类讨论」的方式,把每一种情况都讲清楚,再给出一份可运行、好理解、好维护的 Swift 实现。

描述

题目要求我们:

  • 给定一棵合法的二叉搜索树
  • 给定一个要删除的值 key
  • 删除对应节点,并保持 BST 的性质不变
  • 返回更新后的根节点

BST 的基本规则还是那一条:

  • 左子树所有节点值 < 当前节点
  • 右子树所有节点值 > 当前节点

同时题目还强调了一点:

要求算法时间复杂度为 O(h),h 为树的高度

这其实在暗示我们:
不能把整棵树拍平重建,只能沿着搜索路径递归处理。

题解答案(整体思路)

删除 BST 节点,本质上可以拆成两步:

第一步:找到要删除的节点

这一点和普通 BST 查找完全一样:

  • key < root.val → 去左子树找
  • key > root.val → 去右子树找
  • key == root.val → 找到了,开始处理删除逻辑

第二步:根据节点的结构分类处理

找到目标节点后,分三种情况:

  1. 叶子节点(没有子节点)

    • 直接删除,返回 nil
  2. 只有一个子节点

    • 用它的子节点顶替它的位置
  3. 左右子节点都存在

    • 找到右子树中的最小节点(或左子树中的最大节点)
    • 用这个值替换当前节点
    • 再递归删除被“借用”的那个节点

这三种情况,是整个题目的核心。

题解代码(Swift 可运行 Demo)

下面是完整的 Swift 实现,包括 TreeNode 定义和删除逻辑。

import Foundation

public class TreeNode {
    public var val: Int
    public var left: TreeNode?
    public var right: TreeNode?
    
    public init(_ val: Int) {
        self.val = val
        self.left = nil
        self.right = nil
    }
}

class Solution {
    
    func deleteNode(_ root: TreeNode?, _ key: Int) -> TreeNode? {
        guard let root = root else {
            return nil
        }
        
        if key < root.val {
            root.left = deleteNode(root.left, key)
        } else if key > root.val {
            root.right = deleteNode(root.right, key)
        } else {
            // 找到要删除的节点
            
            // 情况 1:没有左子树
            if root.left == nil {
                return root.right
            }
            
            // 情况 2:没有右子树
            if root.right == nil {
                return root.left
            }
            
            // 情况 3:左右子树都存在
            let minNode = findMin(root.right)
            root.val = minNode.val
            root.right = deleteNode(root.right, minNode.val)
        }
        
        return root
    }
    
    private func findMin(_ node: TreeNode?) -> TreeNode {
        var current = node
        while current?.left != nil {
            current = current?.left
        }
        return current!
    }
}

题解代码分析

1. 为什么删除一定要分类讨论?

因为 BST 的结构不统一,删除节点后,必须保证:

  • 中序遍历仍然是有序的
  • 父子关系不能乱

如果不分情况直接暴力删,很容易破坏 BST 的结构。

2. 叶子节点的删除

if root.left == nil && root.right == nil {
    return nil
}

这是最简单的一种情况,直接删掉即可。

在递归结构中,其实可以合并到:

if root.left == nil {
    return root.right
}

因为 root.right 本身就是 nil

3. 只有一个子节点的情况

if root.left == nil {
    return root.right
}
if root.right == nil {
    return root.left
}

这种情况下,用子节点直接“顶上来”,不会破坏 BST 的规则。

4. 左右子树都存在时怎么处理?

这是最关键、也最容易写错的部分。

正确做法是:

  • 找一个 能替换当前节点,又不破坏 BST 的值

  • 这个值只能来自:

    • 右子树的最小值(中序遍历的后继)
    • 或左子树的最大值(中序遍历的前驱)

本题中我们选的是:右子树最小节点

let minNode = findMin(root.right)
root.val = minNode.val
root.right = deleteNode(root.right, minNode.val)

这一步的本质是:

  • 用后继节点的值覆盖当前节点
  • 再把那个后继节点删掉

5. 为什么时间复杂度是 O(h)?

因为:

  • 每次递归只往左或右走
  • 没有遍历整棵树
  • 最坏情况是树退化成链表,高度为 h

示例测试及结果

我们用示例 1 来跑一遍:

let root = TreeNode(5)
root.left = TreeNode(3)
root.right = TreeNode(6)
root.left?.left = TreeNode(2)
root.left?.right = TreeNode(4)
root.right?.right = TreeNode(7)

let solution = Solution()
let newRoot = solution.deleteNode(root, 3)

print(newRoot?.val ?? -1)

删除 3 后,可能得到:

      5
     / \
    4   6
   /     \
  2       7

或另一种等价 BST 结构,都是正确结果。

时间复杂度

  • 查找节点:O(h)
  • 删除节点:O(h)

总体时间复杂度:O(h)
其中 h 是树的高度。

空间复杂度

  • 递归调用栈占用:O(h)
  • 没有使用额外的数据结构

空间复杂度:O(h)

总结

LeetCode 450 是一道非常典型、也非常值得反复消化的 BST 基础题。

它教会你的不是“怎么写删除”,而是:

  • 如何用递归精确控制结构变化
  • 如何通过分类讨论避免复杂度爆炸
  • 为什么 BST 的性质能帮我们缩小问题范围
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

网罗开发

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值