100 days of ML codes :Day2

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

dataset = pd.read_csv('./dataset/studentscores.csv')
x = dataset.iloc[:,:-1].values
y = dataset.iloc[:,1].values

from sklearn.model_selection import train_test_split

X_train,X_test,Y_train,Y_test =  train_test_split(x,y,test_size = 0.2, random_state = 0)

from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train,Y_train)
LinearRegression()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
LinearRegression
LinearRegression()
Y_pred = regressor.predict(X_test)
plt.scatter(X_train,Y_train,color= 'red')
plt.plot(X_train,regressor.predict(X_train),color='blue')

在这里插入图片描述

plt.scatter(X_test,Y_test,color=‘red’)
plt.plot(X_test,regressor.predict(X_test),color=‘blue’)

!jupyter nbconvert --to markdown Day2.ipynb
Y_pred = regressor.predict(X_test)
plt.scatter(X_train,Y_train,color= 'red')
plt.plot(X_train,regressor.predict(X_train),color='blue')
[<matplotlib.lines.Line2D at 0x1afa3db0380>]

[外链图片转存中…(img-Jl0ySSQP-1747841823122)]

plt.scatter(X_test,Y_test,color=‘red’)
plt.plot(X_test,regressor.predict(X_test),color=‘blue’)

!jupyter nbconvert --to markdown Day2.ipynb
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值