import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
dataset = pd.read_csv('./dataset/studentscores.csv')
x = dataset.iloc[:,:-1].values
y = dataset.iloc[:,1].values
from sklearn.model_selection import train_test_split
X_train,X_test,Y_train,Y_test = train_test_split(x,y,test_size = 0.2, random_state = 0)
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train,Y_train)
LinearRegression()In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
Y_pred = regressor.predict(X_test)
plt.scatter(X_train,Y_train,color= 'red')
plt.plot(X_train,regressor.predict(X_train),color='blue')
plt.scatter(X_test,Y_test,color=‘red’)
plt.plot(X_test,regressor.predict(X_test),color=‘blue’)
!jupyter nbconvert --to markdown Day2.ipynb
Y_pred = regressor.predict(X_test)
plt.scatter(X_train,Y_train,color= 'red')
plt.plot(X_train,regressor.predict(X_train),color='blue')
[<matplotlib.lines.Line2D at 0x1afa3db0380>]
[外链图片转存中…(img-Jl0ySSQP-1747841823122)]
plt.scatter(X_test,Y_test,color=‘red’)
plt.plot(X_test,regressor.predict(X_test),color=‘blue’)
!jupyter nbconvert --to markdown Day2.ipynb